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Abstract
This paper characterizes variation in shoot and root traits collected from the founders of the Maize Nested 
Association Mapping panel, which was designed to maximize genetic diversity while ensuring appropriate 
flowering in eastern North America. Here, we present a detailed account of greenhouse experiments conducted 
by four cohorts of undergraduate research interns at the University of Hawaiʻi at Mānoa. We summarize data 
collection, data cleaning procedures, and present data for 38 phenotypic variables for 24 genotypes with the 
number of plant replicates ranging from 3 to 20. The genotype B73 served as our experimental control to enable 
comparison over the four years. We also grew a subset of genotypes under different abiotic stress treatments to 
assess the phenotypic plasticity. These data can be used to predict the potential for different lines to function 
and capacity to adapt to different environments. Data are published on GitHub repositories, and have large reuse 
potential by the scientific community, as well as educators of undergraduate and graduate instruction.
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Objective
Maize (Zea mays) is a global staple produced on every 
continent. It is used in numerous products, serving as 
a vital food source and a major raw material with many 
uses. One way to better understand variation between 
maize genotypes is to explore diversity collections such 
as the Maize Nested Association Mapping (NAM) pop-
ulation, a structured genetic resource comprising 25 
diverse parental maize lines crossed with the common 
reference line B73 [9]. The NAM founders represent 
temperate and tropical genotypes that were sourced 
from Asia, Africa, and the Americas [4, 5]. Exploring the 
extent of phenotypic variation associated with specific 
genotypes provides an expectation of the range of phe-
notypic plasticity these novel traits exhibit [10]. Vari-
ability in phenotypes via environmental conditions (i.e., 
climatic season, condition) informs potential responses 
to unknown environments [15]. Understanding variation 
and sources of variation may help deal with future food 
(in)security as crop production is expected to shift to dif-
ferent regions under future climate scenarios [11]. Since 
genetic diversity is the raw material for both natural and 
human-mediated selection [1], it will be imperative to 
understand plant traits, such as the unique growth rate, 
and root morphology to select genotypes that will with-
stand seedling stress and avoid disease [2, 6].

There has been much effort to explore the above 
ground characteristics [3], but there has been less effort 
with respect to the roots and growth rate. For instance, 
while it is well known that there are tremendous intra-
specific differences in root traits, the variation between 
cultivars is not well quantified nor is it very comprehen-
sive [12, 16]. Therefore, we need to explore the variation 
in shoot and root traits across diverse plant material. 
Here we characterize the seedling shoot and root traits 
of 24 NAM population parents and connect these traits 
to variation in aboveground seedling growth rate. We 
demonstrate that undergraduate researchers can be an 
integral part of generating datasets that provide baseline 
information on variability for important traits. Through 
this effort, we also developed methodology for standard-
izing data collection and analysis in multiple years by dif-
ferent cohorts of researchers.

Data description
Data were generated as part of an REEU cohort program 
[8]. Plants were grown in a completely random design 
with 3–20 replicates depending on survival. Within each 
treatment group, 24 of the 26 NAM founder parents 
were grown over the course of the program. The general 
experimental workflow can be seen in Fig. 1.

Leaf elongation rates (LER) were taken when leaf #4 
emerged from the whorl and growth reached a steady 
state (three days with no change in growth rate). Every 

24 h, leaf #4 was measured as the distance from the inser-
tion point of leaf #1 at the base of the plant to the tip of 
leaf #4. Plants were dissected and leaf blade length, leaf 
blade width, and leaf sheath length were measured on 
leaf #1–4, scanned, segmented (conversion of image into 
different parts for analysis), and analyzed with the ImageJ 
software [13]. Roots were harvested from each pot and 
each part of the root system was scanned using an Epson 
v850 scanner. Images were analyzed with RhizoVision 
Explorer 2.0.3 software [14]. Trait distributions were 
visualized using ggplot2 [17] showing large variation in 
root and leaf traits within and across years (Figs. 2, 3 and 
4). There were also significant differences in the amount 
of within genotype variation. The amount of variation 
was a result of both the differences between the geno-
types and the differences between the environments. 
There are clear differences between genotypes as seen by 
the confidence intervals around the slope and asymptote 
of the linear plateaus. For each treatment and condition, 
distributions were created for leaf 2–4, showing a large 
within and across year variation in root traits (Fig.  3). 
There was also variation within genotypes (Fig.  4). To 
check the technical validity, we explored variation in the 
control inbred line B73 (Fig. 5).

Data set 1 contains records of the blade dimensions 
(width, length, surface area) and sheath length of leaf 
#1–5 from 2021 to 2024 of 20 genotypes (Fig. 6), across 
growth treatments (control, growth, shade) from 11 geo-
graphic regions (Iowa, Mexico, North Carolina, Kwazulu 
Natal, Ohio, Indiana, Texas, Missouri, Thailand, Michi-
gan, Kentucky) and five genetic origins (stiff stalk, sub-
tropical, mixed, non-stiff stalk, and popcorn) grouped 
by climate zone (temperate or tropical). Data set 2 con-
tains records of root types (crown, primary, seminal) and 
trait measurements of 21 genotypes from data collected 
between 2021 and 2024 across growth treatments from 
11 geographic regions and five genetic origins grouped by 
climate zone. The Data Set 3 file contains the leaf mea-
surements (mm) of leaf #4 with daily measurements until 
cessation from 2021 to 2023 of 20 maize genotypes across 
growth treatments from 11 geographic origins and five 
genetic origins. In 2024, leaf measurements (mm) of leaf 
#5 were measured daily until cessation. Data Set 4 con-
tains the growth rate (mm) of 24 genotypes collected 
between 2021 and 2024 of leaf #4 (i.e., the plant’s fourth 
leaf with visible leaf collars, beginning with the lower-
most, short, rounded-tip true leaf and ending with the 
uppermost leaf with a visible leaf collar) or leaf #5 with 
duration of days until cessation, height in mm at start 
of leaf growth across season (fall, spring, summer) and 
treatment. All the treatments and growing seasons can 
be seen in Data Set 5, and definitions of phenotypes can 
be seen in Data Set 6.



Page 3 of 8Montoya-Pimolwatana et al. BMC Research Notes          (2025) 18:206 

This data has the potential to provide a baseline expec-
tation for root growth and growth rate for important 
parental lines representing a large proportion of maize 
diversity. There is great utility in this data to understand 
genetic variation and growth rate plasticity. Additionally, 
we created various subsets of the data (see github -  h t t p  
s : /  / g i t  h u  b . c  o m /  k a n t  0 0  6 3 /  R E E  U - - -  D a  t a -  S c i  e n c e  - i  n - A  g r i  c 
u l t  u r  e - d  a t a  - a n d  - c  o d e  / t r  e e / m  a i  n / D  a t a  _ D e s  c r  i p t i o n _ M a n 
u s c r i p t and  h t t p  s : /  / d o i  . o  r g /  1 0 .  6 0 8 4  / m  9 . fi   g s  h a r e  . 2  7 9 6 4 5 3 
6 . v 3).

These subsets were as follows:

1. B73 under controlled conditions for all season/year.
2. Nested genotype under season/year under control 

conditions excluding genotypes B73, HP301, NC350, 
OH7b, Ki11.

3. Crossed genotype under control conditions by 
season/year.

4. Drought treatment by genotype.

The visual depictions of these structures can be seen in 
(Fig. 6). We have omitted one treatment (shade) because 
it was only conducted in one season/year combination 

and experimental notes suggest confounding environ-
mental factors (e.g. temperature) which make that spe-
cific treatment unreliable. Leaf #5’s growth rate data was 
also omitted because it was only recorded one year. For 
data subset one (B73 under controlled conditions for all 
season/year), we observed that 68.72% of variation is 
explained by season/year and found that 31.28% is exper-
imental error. For data subset two (Nested genotype under 
season/year under control conditions excluding genotypes 
B73, HP301, NC350, OH7b, Ki1), we found that 44.30% is 
explained by season/year with 49.97% explained by geno-
type within season/year and 5.73% is experimental error. 
For data subset three (Crossed genotype under control 
conditions by season/year), we determined that 15.0% of 
variation is explained by genotype and find that 85.0% is 
experimental error. For data subset four (Drought treat-
ment by genotype), we estimated that 19.11% of variation 
is explained by genotype, with 3.72% explained by treat-
ment, and 77.17% is experimental error. For normal-
ized data subset one, we found that 2.93% of variation is 
explained by season/year, we find that 97.07% is experi-
mental error. For normalized data subset two, we deter-
mined that 7.94% is explained by season/year with 83.11% 

Fig. 1 This figure shows the project workflow to grow seedlings and phenotype leaf and root characteristics. The project started with cohort recruitment, 
followed by training, followed by planting the experiment. Approximately 15 days post germination leaf #4 of the plants are ready for measurement. 
When leaf four stops growing, the experiment is harvested, and roots are washed and measured. The experimental data is then analyzed by the cohort 
[8]. This structure can be used for any plant or soil course that wants to incorporate experiential student learning into the curriculum
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Fig. 2 Rain Cloud plot of 22 maize genotypes showing the surface area (mm²) of the root system components (crown, seminal, and primary, top to bot-
tom), each maize genotype is represented on the Y axis as a box plot paired with the distribution of root surface areas (x-axis)
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Fig. 3 Rain Cloud plot of 20 maize genotypes showing the surface area (mm²) of measured leaf 2, 3 and 4, each maize genotype is represented on the 
y-axis as a box plot paired with the distribution of leaf surface areas on the x-axis. The plots are faceted to show the area per year (2021–2024) and treat-
ment (control and drought)
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explained by genotype within season/year and 8.95% 
is experimental error. For the normalized data subset 
three, we observed that 84.81% of variation is explained 
by genotype and find that 15.19% is experimental error. 
For normalized data subset four, we measured that 
19.11% of variation is explained by genotype with 3.72% 
explained by treatment, and 77.17% is experimental error. 

Consistent and comprehensive characterization of the 
shoot and root system has immense implications because 
differences in shoot and root architecture can greatly 
impact how the plant responds to stress. Understanding 
the total amount of variation and where that variation 
resides creates an opportunity to both understand what 
genotypes fit in different environments and what genetics 

Fig. 5 Rain Cloud plot of maize genotype B73 showing the number of crown root tips. The plot is faceted to show the number of root tips per year 
(2021–2024) per treatment (control and drought)

 

Fig. 4 Rain Cloud plot of 24 maize genotypes showing seedling growth rate (mm²). Each maize genotype is represented on the y-axis as a box plot paired 
with the distribution of leaf surface areas on the x-axis. The plots are faceted to show the area per year (2021–2024), leaf (four) and treatment (control 
and drought)
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can be a source of parental material for future breed-
ing. These data not only have utility to further research 
efforts, they also have use for plant physiology/biology/
plant breeding courses by allowing instructors to conduct 
a similar experiment and combine their data with the 
data presented to create project-based learning within 
the context of required and elective courses (Fig.  1 and 
Table 1 [7]).

Limitations
Each cohort of students measured variables in slightly 
different ways and students-imposed treatments in 
slightly different ways which contributed to variation 
in the datasets across the years. Individual students did 
not always follow the protocol, this led to differences in 
recorded data (e.g. sometimes different numbers of sig-
nificant figures were used). For cohort-based data gener-
ation with undergraduates or teams of researchers, clear 
guidance on rounding and significant figures should be 
included as standards in protocols.
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Table 1 Overview of data files/data sets
Label Name of data file/data set File types (file extension) Data repository and identifier (DOI or accession number)
Data set 1 all_years_growth_rate_L4_final .csv Figshare -[7]
Data set 2 all_years_leafs_final_fixed .csv Figshare -[7]
Data set 3 all_years_roots_final-2 .csv Figshare -[7]
Data set 4 allyears_growthratedata_2021_2025 .csv Figshare -[7]
Data set 5 Table Traits and Trait Descriptions .xlsx Figshare -[7]
Data set 6 Table_Experiment_Descriptions .docx Figshare -[7]
Code reeu_project .Rmd Figshare -[7]

Fig. 6 Data structure for each of the datasets examined (A) B73 under controlled conditions for all season/year; (B) Nested genotype under control 
conditions by season/year; (C) Drought treatment by genotype within season/year (partially crossed); (D) Drought and shade treatment by genotype 
(fully crossed)
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