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Abstract 

In this Research Note, we introduce Intronomics-MIP, a snakemake-based pipeline for the automated analysis of multi-
locus intron polymorphisms (MIPs) using intron-targeted amplicon sequencing. Building on established methodolo-
gies, our pipeline integrates tools such as Cutadapt, FLASH, and SeekDeep to efficiently process and analyze highly 
variable intron regions. These MIPs serve as powerful multiple-allelic markers, primarily useful for distinguishing 
species, identifying cryptic species, disentangling species complexes and detecting hybridization, but can also be 
informative for assessing population structure without prior species knowledge. Our pipeline enhances reproducibil-
ity and scalability, making it adaptable to a wide range of taxa, with a specific demonstration on teleost species. We 
provide a comprehensive overview of the pipeline’s design, along with performance assessments using representa-
tive datasets.
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Introduction
The study of species groups, particularly those where 
interspecific hybridization or introgression is known or 
suspected, needs the analysis of shared bi-parentally inher-
ited molecular markers. Traditional approaches, such as 
microsatellites [2, 4] or genome-wide SNP analyses [5, 
16], have been widely used, but recent advancements have 

introduced intron-targeted amplicon sequencing as an 
effective alternative. This approach characterizes multi-
locus intron polymorphisms (MIPs) [1], leveraging highly 
variable intron regions that are transferable across species.

MIPs have proven to be versatile nuclear markers, effec-
tively distinguishing closely related species and popula-
tions with varying structures [1]. This method is especially 
advantageous for monitoring interspecific hybridization 
due to the hypervariable nature of these loci and the rela-
tively long sequences they produce, facilitating the devel-
opment of diagnostic markers. In particular, the approach 
has been successfully applied to teleost fish, a group char-
acterized by high species diversity and complex evolution-
ary histories, as demonstrated in Boscari et al. [1].

Moreover, since the analysis of hypervariable intronic 
regions is anchored to the flanking exonic regions, which 
are selected for their high degree of conservation, MIPs 
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offer the advantage of high transferability across species. 
The utility of MIPs extends beyond fish species, as this 
technique can be adapted for use in other taxa, revealing 
new sources of genetic variation.

To automate and streamline the analysis of MIPs, we 
developed a Snakemake-based pipeline [9] that integrates 
several bioinformatic tools into a cohesive workflow. This 
pipeline enhances reproducibility and enables scalable 
and efficient processing of large datasets.

To test the pipeline, we used the same samples reanalyzed 
the same samples from Boscari et  al. [1], allowing for a 
direct comparison of the efficiency and speed of the scripts 
used to automate the workflow. This comparison provides a 
benchmark for evaluating the improvements introduced by 
our automated pipeline.

The pipeline output includes a table listing the allele 
names with their respective coverage, a Genepop file for 

population genetics analyses, and a folder containing the 
intronic sequences.

Methods
Overview of the pipeline
The pipeline is structured into sequential steps, or “rules” 
within the Snakemake python-based workflow manager, 
each corresponding to a specific bioinformatic process. The 
pipeline begins with the preprocessing of raw FASTQ files, 
followed by the merging of paired-end reads, and concludes 
with haplotype generation using SeekDeep [10]. A schematic 
overview of the pipeline’s workflow is provided in Fig. 1.

Preprocessing of sequencing data
The first rule involves the script “split.py,” which is used 
as follows:
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The input includes the list of samples, locus-specific 
primers, and the adapters used for sequencing (includ-
ing reverse complements). This script is designed to 
automate the process of trimming and filtering raw 
FASTQ files using Cutadapt (v2.8) [8], ensuring that 
sequences are processed according to the specific 
adapter-locus information provided. The script han-
dles multiple samples and outputs processed data in the 
specified directory structure.

The key parameters used are as follows:

•	 Quality cutoff (-q): 15. We chose a balance between 
maintaining good read quality and retaining a large 
number of reads, achieving an accuracy of 97%.

•	 Minimum read length after trimming: 100 bp. To avoid 
including poorly alignable and low-quality reads in the 
analysis.

•	 Minimum overlap length with primer sequence: 15 bp. 
A 15  bp overlap ensures good primer-target affinity 
without excluding potentially useful reads, given the 
primer length of 18–25 bp.

Fig. 1  Flow diagram of the Intronomic-MIP pipeline from preprocessing to haplotype generation. Raw fastq reads processing: Cutadapt is used 
to demultiplex based on loci primers, discard low-quality bases, and remove adapters, setting a quality cutoff. Merging paired-end reads: FLASH 
merges pair-end reads, discarding loci where merged reads are < 10% of total. Reconstructing MIPs genotypes: SeekDeep pipeline clusters allelic 
variants, estimates allele frequencies with the qluster package, and filters out low-frequency alleles with processClusters. The final output retains 
only the top alleles by frequency for each locus and sample, with a cumulative fixed abundance
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Merging of paired‑end reads
To simplify the management of output folders, a script 
was added that renames the samples numerically and 
sequentially (e.g., Ind1, Ind2…).

After the trimming step, paired-end reads are merged 
using the FLASH (v2.2.00) program [7], which identifies 
overlaps between the reads in each pair. FLASH uses a 
default minimum 10  bp overlap for merging reads. We 
set a maximum overlap of 300  bp to merge only reads 
with overlaps under 300  bp. Primers targeted intronic 
regions in the 300–600 bp range to generate comparable 
sequences. Sequences shorter than 300  bp are excluded 
because they can present challenges during gel electro-
phoresis, making them less suitable for subsequent con-
struction of rapid identification kits. In our case intronic 
sequences longer than 590 bp are discarded because they 
do not allow the minimum 10 bases overlap of the paired 
reads, (sequencing length is 300 bp). The pipeline handles 
this with the following Snakemake rule:

A different rule that uses a handmade script checks if 
the number of merged reads is less than 10% of the total 
reads for a given locus; in this case the locus is discarded, 
as this is insufficient to generate reliable haplotypes.

Haplotype generation
An additional step involves using SeekDeep (v3.0.0) to 
perform de novo clustering of allelic variants. The algo-
rithm assesses the genetic similarity between variants 
based on metrics such as distance matrices or sequence 
alignment scores. Variants are grouped into clusters 
where variants within the same cluster exhibit a high 
degree of similarity, indicating that they likely represent 
the same allele. In this step samples where the coverage 
is < 30 sequences are discarded. Post-clustering refine-
ment steps may also be employed to reduce noise, merge 
closely related clusters, and eliminate outliers.

This step is crucial for accurately identifying and char-
acterizing alleles across the samples, and it includes two 
main components:

•	 qluster: This component is responsible for predicting 
and estimating allele frequencies. To increase sensitiv-
ity to potential chimeras, we adjusted the command by 
adding the parameter –parFreqs = 1.5. The parFreqs 

parameter, which stands for Chimeric Parent Fre-
quency multiplier cutoff, was originally set to a default 
value of 2. By lowering this value to 1.5, the pipeline 
becomes more sensitive in detecting and accounting 
for chimeric sequences, which is critical for ensur-
ing the accuracy of haplotype reconstruction. Qluster 
uses quality scores to differentiate true variants from 
errors and k-mer frequencies to filter low-abundance 
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PCR artifacts. The process starts by collapsing identi-
cal reads into clusters, indexed by k-mers and sorted 
by abundance. Clusters are iteratively compared and 
merged based on majority-rule consensus if thresholds 
are met. After each iteration, consensus sequences are 
updated and clusters re-evaluated until no changes 
remain (for more details, refer to Hathaway [10]).

•	 processClusters: This component is used for filtering 
and comparing alleles across samples. We employed 
several specific parameters to refine this process:

•	–illumina: This option indicates that the data orig-
inate from Illumina sequencing, optimizing the 
analysis for this technology.

•	–noErrors: This parameter ensures that only 
sequences with no detectable errors (such as incor-
rect mutations, insertions, or deletions) are retained, 
thereby improving the reliability of the allele calls.

•	–sampleMinTotalReadCutOff = 30: This parameter 
sets a minimum threshold for the total read count 
for each sample, discarding any sample with fewer 
than 30 reads. This helps eliminate samples with 
insufficient sequence coverage, reducing the likeli-
hood of low-frequency alleles that are more likely 
to be artifacts rather than true biological variants.

These adjustments ensure that the haplotype genera-
tion process is both sensitive and specific, resulting in 
more accurate and reliable outcomes across the analyzed 
samples.

The final output of the workflow is a table that contains 
all alleles for each individual at every locus. Each allele is 
associated with a certain coverage, and thanks to the cumu-
lativeSum parameter, adjustable in the configuration file 
(config.yaml), it is possible to discard probable low-cov-
erage alleles (artifacts generated during amplification or 
sequencing) that escape SeekDeep’s filters. In this way, only 
alleles whose cumulative coverage exceeds the cumulative-
Sum % of total coverage are retained. Here’s an example:

Generation of a Genepop file
In addition to the final table containing genotype infor-
mation and a folder with FASTA sequences of all alleles, 
the pipeline also provides a Genepop file [13] for fur-
ther analysis, e.g. Structure. Alleles are coded by three 
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digits (six digits for a diploid genotype, e.g., “001001” or 
“005081”), with missing data coded as “000000”. To test 
if the genotypes recovered from the pipeline contain 
the same biological information of the genotypes recov-
ered in Boscari et al. [1], the Structure program (v2.3.4) 
[12] is used to infer the genetic structure of populations 
and to assign individuals to populations based on their 
genotypes.

Results
The pipeline was tested on a dataset of 361 samples.

A total of 12.2 Gb of data was processed in 13 h, 7 of 
which were spent on the trimming step (working on a 
computer with AMD Ryzen 9 5900X 12-Core Processor 
3.70 GHz and 32 GB of RAM).

To verify that our pipeline yields the same output 
given by manual procedure we reanalyzed the same 41 
individuals of the species Solea aegyptiaca [14] previ-
ously analyzed by Boscari et al. [1], and used the output 
to perform Structure analyses (Fig.  2). The full over-
lapping of the results obtained by the two approaches, 

including the three individuals morphologically classi-
fied as S. solea, are genetically assigned to the species 
S. aegyptica (Fig.  2A) and to the population from the 
Adriatic Sea, with probability close to 100% (Fig. 2B).

Discussion
The development of this Snakemake-based pipeline rep-
resents a significant advancement in automating the 
analysis of multi-locus intron polymorphisms (MIPs). By 
integrating established bioinformatic tools into a cohe-
sive and automated workflow, this pipeline addresses key 
challenges in analyzing highly variable intron regions, 
particularly in terms of reproducibility and efficiency.

The identical population structure results coming from 
the pipeline and from the original methodology in Bos-
cari et  al. [1] confirm the robustness of the pipeline in 
handling complex datasets and producing reliable genetic 
insights.

A major strength of the pipeline is its ability to han-
dle large and complex datasets. By automating multiple 
steps, from preprocessing raw data to generating haplo-
types, the pipeline minimizes human error and ensures 

Fig. 2  Comparison of the population structure graphs generated using Structure and post-processed with Clumpak [6]. A Membership 
probabilities of cluster assignment for the individuals of the two species. The analysis clearly shows that three individuals (highlighted by the red 
circle), which had been morphologically assigned to the species Solea solea, are in fact Solea aegyptiaca from the Adriatic Sea as demonstrated 
in the S. aegyptiaca population structure (B). [Solea solea = SS,Solea aegyptiaca = SA; Tyrrhenian Sea = TYR; North Adriatic Sea = ADR; Greece = GRE; 
Turkey = TUR; Alessandria = ALE]



Page 7 of 8Scapolatiello et al. BMC Research Notes          (2025) 18:203 	

consistent and reproducible results across different data-
sets and research groups.

Moreover, the pipeline’s flexibility allows for its applica-
tion across a wide range of taxa, extending beyond fish 
species. The ability to apply the same workflow to differ-
ent organisms without extensive modification opens new 
opportunities for comparative studies and the discovery 
of novel genetic variation in non-model species [3]. This 
adaptability is particularly useful in ecological and evo-
lutionary research, where universal markers like MIPs 
facilitate cross-species comparisons.

Conclusions
This Snakemake-based pipeline provides a robust and 
scalable solution for the generation of haplotypes from 
raw multi-locus targeted sequencing data and represents 
a powerful tool for investigating genetic diversity, spe-
cies differentiation, and hybridization. By automating the 
process, it ensures consistency and reproducibility, mak-
ing it a valuable tool for researchers working with MIP 
markers and similar datasets.

Limitations
While our pipeline represents a significant advancement 
in the automated analysis of MIPs, it has some limita-
tions. The success of the pipeline depends on the quality 
of the input data. Despite the implementation of strin-
gent filtering steps, low-quality reads can still lead to 
errors in haplotype generation, potentially skewing the 
results [11]. Even after trimming and filtering, low-qual-
ity reads may cause inaccurate haplotype calls, which can 
affect downstream analyses. Another limitation is that 
the pipeline’s effectiveness in detecting rare alleles might 
be constrained by the thresholds set for coverage filter-
ing, potentially excluding biologically significant low-fre-
quency alleles, especially in populations with high genetic 
diversity. Lastly, although the pipeline is generally robust, 
scalability may become a challenge when handling excep-
tionally large datasets or highly complex genomes [17, 
18], where computational resources and processing time 
could become limiting factors.

A further issue concerns the use of references for hap-
lotype generation. Although SeekDeep allows for the use 
of reference files, it does not easily manage output data. 
A future update of the pipeline could therefore integrate 
a rule for handling a priori information.

Additionally, we are exploring ways to automate the 
identification of species-specific alleles.
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