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Abstract 

Objective  Chikungunya fever continues to spread worldwide due to its asymptomatic nature and lack of a specific 
treatment. A mathematical model using the Caputo fractional order derivative is developed to study the interactions 
between host defense cells and Chikungunya viral particles in this research. The model’s solution existence, unique-
ness, and positivity are analyzed. The disease-free state threshold and Hyers-Ulam stability are established.

Results  The basic reproductive number R0 ≈ 7 , depict a high replication rate of the virus, indicating an increased 
infectiousness of uninfected cells. Sensitivity analysis shows that the invasion rate of susceptible monocytes increases 
spread, while antigenic immune response keeps R0 below 1. The Laplace Adomian Decomposition Method (LADM) 
is used to solve the model. Experimental outcomes suggest that the enhanced adaptive immune response, poten-
tially influenced by nutritional support or medication, exhibits a more pronounced hysteresis effect. We observed 
that viral particles are cleared approximately three (3) days earlier before cell infection, potentially clearing the virus 
within a week. This insight could accelerate elimination of viral particles and expedite virus clearance.
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Introduction
The global public health struggles with infections trans-
mitted by mosquitoes through chikungunya virus and 
additional diseases [1]. Infected delivery by Aedes mos-
quitoes leads to the transmission of chikungunya virus 
(CHIKV) to humans foremost through the bites of Aedes 
albopictus and Aedes aegypti species [2]. Several seri-
ous diseases thrive in these mosquitoes which act as dis-
ease vectors to infect patients with both dengue fever 
and Zika virus. The transmission cycle of CHIKV begins 
when a mosquito feeds on an infected human, allowing 

the virus to replicate within the mosquito’s body before 
being transmitted to another human host during a subse-
quent blood meal [3]. This perpetuates the virus spread, 
especially in regions with prevalent Aedes mosquito pop-
ulations, causing sudden fever, severe joint pain, and a 
rash. Vector control is central to prevention efforts, while 
ongoing research aims at developing vaccines and treat-
ments. The initial chikungunya outbreak was detected 
in southern Tanzania in 1952, with subsequent cases 
emerging across Asia [4].

Currently, specific treatment for CHIKV is lacking 
[5], but various studies, including [6], have proposed 
strategic approaches such as antiviral treatment [6] and 
anti-infective therapy [7]. The side effects of these treat-
ments, notably the paradoxical effect of chloroquine on 
enhancing CHIKV infection, have also been examined by 
authors, including [8].
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Vaccination remains a cornerstone of infectious disease 
prevention [9–13], with studies [14–16] assessing vaccine 
efficacy to guide policymakers. Mathematical modeling 
plays a crucial role in shaping disease eradication strate-
gies [17–19]. In CHIKV transmission, research [20] has 
explored within-host immune responses, emphasizing 
immunity’s role in controlling viral replication.

Advancements in single-cell technologies have deep-
ened our understanding of chromatin organization, 
gene regulation, and cellular states. ScHiClassifier [39] 
improves cell type prediction from scHi-C data, while 
iPro-WAEL [40] enhances promoter identification across 
species. scCross [41] integrates multi-omics data using 
deep learning, and scHiCyclePred [42] refines cell cycle 
phase prediction from chromatin interactions. These AI-
driven models showcase the potential of computational 
approaches in biological research. Moreover, studies [21, 
22] have analyzed CHIKV dynamics, underscoring math-
ematical modeling’s significance in disease control and 
motivating further research in this domain. Fractional-
order epidemic models offer superior insights compared 
to traditional ones [23]. Though their real-world appli-
cation poses challenges, notable studies, like Tuan et al. 
[24] modeling COVID-19 transmission, demonstrate 
their potential. Operators like the Caputo, derivative are 
instrumental in disease modeling, as seen in research 
by Rezapour et  al. [25] and Baleanu et  al. [26], indicat-
ing their relevance to our research. This study employs 
the Caputo fractional derivative model’s ability to capture 
short-term memory effects, surpassing Riemann–Liou-
ville. This makes it the prefer choice for modeling CHIKV 
in the present study.

Numerical simulation is essential for modeling, often 
necessitating solving complex equations [27–30]. Given 
the nonlinear nature of many models, methods like 
He’s homotopy perturbation [31–33] are employed. The 
Laplace-Adomian decomposition method is favored due 
to prevalent non-linearity and the inclusion of fractional 
derivatives [34], as demonstrated in recent applications 
to tuberculosis modeling [35].

Preliminaries of fractional calculus
We discuss some essential ideas of fractional calculus 
applicable in this study here.

Definition 1:  A real function f (x), x > 0, is said to be 
in the space Cµ , µ ∈ R if there exist a real number m > µ 
such that f (x) = xm(x). where f1(x) ∈ C(0,∞), and it is 
said to be in the space Cn

µ if and only if f ∈ Cµ, n ∈ N .

Definition 2:  The Riemann–Liouville fractional 
integration of order η ≥ 0 of a positive real function 
f (x) ∈ Cµ , µ ≥ −1 x > 0 is defined as: f  Such that 

J0f (x) = f (x). Properties hold for fractional integral 
operator Iη for f (x) ∈ Cµ , µ ≥ −1 η,α ≥ 0 and β ≥ −1

:

Definition 3:  The Non-integer time fractional deriva-
tive of a positive real function f (x) given as Dηf (x) is 

given by Dηf (x) = 1
Ŵ(n−1)

t
∫

0

(x − t)n−β−1f (n)(t)dt for 

n− 1 < η ≤ n, n ∈ N , t > 0, φ ∈ cn
−1 .

Definition 4:  Let φ(t) be a function defined for all posi-
tive real number t ≥ 0 The Laplace transform of φ(t) is 

the function φ(s) : φ(s) =
∞
∫

0

e−stφ(t)dt.

	 i.	 The Laplace transform of function φ(t) with 
order η is defined as L[φη(t)] = αηL[φ(t)]−

αη−1φ(0)− αη−2φ′(0)− αη−3φ′′(0) · · ·

	 ii.	 The inverse Laplace transform of φ(s)
s  is 

L−1 φ(s)
s =

t
∫

0

φ(t)dt

Definition 5:  The Laplace transform of the fractional 
integral and derivatives for α > 0 is defined 
as:L[Jαt f (x)] = L

[

1
Ŵ(n−α)

dn

dxn

∫ t
0 (x − u)n−α−1f (x)dx

]

Definition 6:  The Adomian polynomials denoted 
by A0,A1,....An , consists in the decomposition the 
unknown function y(t) in a series of the form 
y(t) = y0 + y1 + y2 + yn can be expressed as:

Mathematical model
The existing mathematical framework extends the work 
mentioned in Alade et al. [22]. Together with fractional 
derivatives the mathematical model provides mem-
ory effects which the original model lacked. Including 
this update enables scientists to model how antigenic 
immunity memory affects transmission dynamics of 
Chikungunya virus. The present model (1) advances 
existing work by bringing together different systems 
to create an extensive perspective on dynamic pro-
cesses. The mathematical model considers five variables 
which include both uninfected cells marked by S(t) 

DηDα f (x) = Dη+αf (x), DηDα f (x) = DαDβ f (x),

Dηxβ =
Ŵ(β + 1)

Ŵ(η + β + 1)
xη+β

.

An =

1

n

dn

d�n



G(t)

n
�

j=0

yj�
j





�=0
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and infected cells denoted by I(t) and CHIKV particles 
indexed by V(t) and antibodies indicated by A(t) and 
cytotoxic T lymphocytes (CTLs) identified by Z(t).

Subject to the starting conditions

Description of model dynamics
The mathematical model in Eq.  (1) describes disease 
through its depiction of different virus spread elements. 
The multiple processes in the model run at distinct 
speeds. The model contains uninfected cell produc-
tion rate µ and antibody production rate ε and CTL 
production rate γ along with CHIKV particle produc-
tion rate k. The CHIKV particle spread rate depends on 
the k parameter value that multiplies the infected cell 
number (I). The model shows that all elements undergo 
death at specific rates termed per capita mortality rates. 
The death rates which denote each model component 
are written as α to represent uninfected cells, b to rep-
resent infected cells, γ to represent CHIKV particles, λ 
to represent antibodies and δ to represent CTLs. The 
infection rate depends on two factors: the parameter b 
and the coupled quantity between uninfected cells (S) 
and CHIKV particles (V). Target cells together with 
infected particles become destroyed by the body’s 
immune mechanisms after infection occurs. The elimi-
nation of both infected cells by CTLs and CHIKV par-
ticles by antibodies occurs at rates w and p respectively. 
The immune response experiences growth alongside 
both antibody cells and CTL cells. The amount of anti-
body production depends on the parameter τ where τ 
multiplies the CHIKV particles (V) and antibodies (A). 
The rate d controls how CTL cells multiply while the 
product of infecting cells (I) and CTL cells (Z) together 
with the parameter d determines the rate of CTL cell 
proliferation. The mathematical structure captures the 
multiple interactions which occur between viral repli-
cation and immune response together with cell dynam-
ics throughout Chikungunya virus infection.

The details of each compartment and the description 
of each parameter utilized by the model are presented 
in Table 1 below.

(1)

DνS(t) = µ− αS − aSV ,

DνI(t) = aSV − βI − wIZ

DνV (t) = kI − γV − aSV − pVA

DνA(t) = ε + τVA− �A

DνZ(t) = dη + cI + dIZ − δZ

(2)
s0 = S(0) ≥ 0, i0 = I(0) ≥ 0, v0 = V (0) ≥ 0,

a0 = A(0) ≥ 0, z0 = Z(0) ≥ 0

Solution positivity

Theorem  1:  The non-negativity of initial conditions 
cDνS(0) ≥ 0, cDνI(0) ≥ 0, cDνV (0) ≥ 0, cDνA(0) ≥ 0,
cDνZ(t) ≥ 0 dictates that all solutions within model (1) 
must remain non-negative over time.

Proof  To maintain biological relevance, the model 
is confined to the domain Ω = {(S, I, V, A, Z): S, I, V, A, 
Z ≥ 0}. Employing system (1), this restriction is evident 
when setting S = 0, I = 0, V = 0, A = 0, and Z = 0 in the 
first, second, third, fourth, and fifth equations of the 
model, respectively. Thus,

Since all specified initial conditions 
cDνS(0) ≥ 0, cDνI(0) ≥ 0, cDνV (0) ≥ 0, cDνA(0) ≥ 0,
cDνZ(t) ≥ 0 are non-negative in ℜ5

+
 , it follows that the 

solution S(t), I(t), V (t),A(t),Z(t) are non-decreasing 
and remains in ℜ5

+
.Furthermore, the vector field on the 

boundary of Ω does not extend towards the exterior 

(3)

∂νS

∂tν
= µ ≥ 0,

∂νI

∂tν
= aSV ≥ 0,

∂νV

∂tν
= kI ≥ 0,

∂νA

∂tν
= ε ≥ 0,

∂νZ

∂tν
= η + cI ≥ 0.

Table 1  Variable and parameters descriptions

Variable Description

S(t) Uninfected cells compression

I(t) Infected cells compression

V(t) CHIKV particles

A(t) Antibodies at time t

Z(t) Cytotoxic T lymphocytes (CTLs)

µ Uninfected cell production rate

∈ Antibody production rate

γ CTL production rate

k CHIKV particle production rate

α Per capita death rate of uninfected cells

b Per capita death rate of infected cells

� Per capita death rate of antibodies

δ Per capita death rate of CTLs

w Rate of infected cell elimination by CTLs

p Rate of CHIKV particle elimination by antibodies

τ Antibody production rate dependent on CHIKV particles

d CTL proliferation rate
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of Ω. Consequently, the region Ω remains positively 
invariant under the flow induced by model (1).

Disease free equilibrium
During equilibrium the host system remains with-
out CHIKV infection while reaching these specific 
thresholds.

Uniqueness and existence
To demonstrate the existence and uniqueness of the 
model solution, the fractional-order system (1) can be 
restated in compact form as:

Subject to χ(x, 0) = χ0

Where χ(x, t) = (S(x, t), I(x, t), V (x, t), A(x, t), Z(x, t))T 
and H(t, χ(x, t)) : [0, �]xℜ5

+
→ ℜ defined by 

H(t,χ(x, t)) = (Hi(t, S,V , I ,A,Z))T , i = 1..5 is such that

Integrating (5) fractionally using Definitions 1 yields 
the Volterra integral equation given by

Take V = (C[0, �], �•�) to be a Banach space demon-
strating continuity for all real-valued functions R, where 
�χ(x, t)� = sup {|χ(x, t)| : t ∈ [0, �]} denotes the supre-
mum. The objective is to demonstrate that H(t,χ(x, t)) 
is Lipschitz continuous and this is consequently 
demonstrated.

(4)(S, I ,V ,A,Z) =
(µ

α
, 0, 0,

ε

�
,
η

δ

)

(5)Dν
t (χ(x, t)) = H(t,χ(x, t)), 0 ≤ t ≤ �

(6)

H1 = µ− αS − aSV ,

H2 = aSV − βI − wIZ

H3 = kI − γV − aSV − pVA

H4 = ε + τVA− �A

H5 = dη + cI + dIZ − δZ

(7)

χ(t) = χ0 +
1

Ŵ(α)

∫ t

0

(

(t − ε)α−1H(ε,χ(ε, 0))
)

dε

Theorem  2:  The function H(t,χ(x, t)) is Lipschitz 
continuous ∀ χ1(x, t) and χ2(x, t) in C

(

[0, �] xR5
+
, R

)

 
and t ∈ [0, �] which satisfies the inequality 
�H(t, χ1(x, t))−H(t, χ2(x, t))� ≤ κ�χ1(x, t)− χ2(x, t)� , 
κ being Lipschitz constant.

P r o o f :   R e c a l l 
H(t,χ(x, t)) = (Hi(t, S,V , I ,A,Z))T , i = 1, 2..6   . 
For S(x, t) , we define the following inequality 
�H1(t, S1, V , I ,A,Z)−H1(t, S2, V , I ,A,Z)� ≤ �α + aV �

�S1 − S2� . Suppose κ1 = α + ag3 and �V (x, t)� ≤ g3 is a 
bounded function, then κ1 is the Lipschitz constant of H1 . 
In same manner, the Lipchitz condition for H2,H3 H4 and 
H5 are given as follows:

�H2(t, S, I1,V ,A,Z)−H1(t, S, I2,V ,A,Z)� ≤ κ2 �I1 − I2�,
�H3(t, S, I ,V1,A,Z)−H3(t, S, I ,V2,A,Z)� ≤ κ3 �V1 − V2�,

�H5(t, S, I ,V ,A,Z1)−H5(t, S, I ,V ,A,Z2)� ≤ κ5 �Z1 − Z2�.
Where κ2 = β + w(1+ x2)g5,κ3 = γ + ag1 + pg4 , 

κ4 = τg3 − � and κ5 = dg2 − δ respectively are the Lip-
schitz constants of H2, H3,H4 and H5 and �S(x, t)� ≤ g1 , 
�I(x, t)� ≤ g2 , �V (x, t)� ≤ g3,�A(x, t)� ≤ g4 , �Z(x, t)� ≤ g5 
are all bounded functions and Hi are contractions if 
0 ≤ κi < 1 , for i = 1, 2...5.

Subsequently, let f : V → V  by f (χ(x, t)) = χ(x, t) so 
that

Theorem  3:  Hyers-Ulam stability on set U. [0, �] if 
�k < Ŵ(α + 1) hold [18].

Proof:  From Theorem  2 let 
χ(t) = (S(t), I(t), V (t), A(t), Z(t))T be a set contain-
ing the unique solution of the fractional order model (4), 
invoking the Riemann Liouville fractional integral on (5), 
we get.

Following (11),

�H4(t, S, I ,V ,A1,Z)−H1(t, S, I ,V ,A2,Z)� ≤ κ4 �A1 − A2�

(8)

f (χ(x, t)) = χ(x, 0)+
1

Ŵ(α)

∫ t

0

(

(t − ε)α−1H(ε,χ(x, ε))
)

dε

(9)

χ(x, t) = χ(x, 0)+
1

Ŵ(α)

∫ t

0

(t − ζ )α−1H(ζ ,χ(x, ζ ))dζ , ∀t ∈ [0, �]

(10)�χ(x, t)− χ(x, t)�φ =

∥

∥

∥

∥

χ(x, t)− χ(x, 0)−
1

Ŵ(α)

∫ t

0

(t − ζ )α−1H(ζ ,χ(x, ζ ))dζ

∥

∥

∥

∥

φ
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Taking the sum and difference of 
1

Ŵ(α)

∫ t
0 (t − ζ )α−1H(ζ ,χ(x, ζ ))dζ in (10), the triangle 

inequality yields.
�χ(x, t)− χ(x, t)�φ ≤ �χ(x, t)− χ(x, 0)

−

1

Ŵ(α)

∫ t

0

(t − ζ )α−1H(ζ ,χ(x, ζ ))dζ

∥

∥

∥

∥

φ

+

∥

∥

∥

∥

1

Ŵ(α)

∫ t

0

(t − ζ )α−1(H(ζ ,χ(x, ζ ))−H(ζ ,χ(x, ζ )))dζ

∥

∥

∥

∥

φ
 

and one can obtain

Applying theorem 2, we have

So, that �χ(x, t)− χ(x, t)�φ ≤ �ε, 
where,� =

�
α

Ŵ(α+1)−�ακ

It can be concluded that the fractional order DENV 
model (5) demonstrates Hyers-Ulam stability on [0, �].

Basic Reproduction number
The typical quantity of monocyte infections that appear 
when an infected person is placed in isolation mono-
cyte inside an uninfected monocyte population [14]. 
R0 = ρ(G) G = FxV−1

Such that

(11)
�χ(x, t)− χ(x, t)�φ ≤

ε�α

Ŵ(α + 1)
+

1

Ŵ(α)

∫ t

0

(t − ζ )α−1
�(H(ζ ,χ(x, ζ ))−H(ζ ,χ(x, ζ )))�φdζ

(12)

�χ(x, t)− χ(x, t)�φ ≤

ε�α

Ŵ(α + 1)
+

�
ακ

Ŵ(α + 1)
�χ(x, t)− χ(x, t)�φ

(13)

Here, F∗
=

[

aSV
0

]

andV ∗
=

[

βI + wIZ
−kI + γV + aSV + ρVA

]

(14)

F =

[

0 aS
0 0

]

, V =

[

(β + wZ) 0
−k (γ + aS + ρ)A

]

(S, I ,V ,A,Z) =
(µ

α
, 0, 0,

ε

�
,
η

δ

)

Such that R0 = ρ
(

FxV−1
)

 yields

Application Laplace‑Adomian decomposition 
method (LADM)
Using Laplace transforms and Adomian polynomials to 
provide a numerical solution for Eq. (3) is widespread in 
physics, engineering, and biology, particularly in scenar-
ios where alternative methods are inefficient. Taking the 
Laplace transform of Eq. (3), we obtain the following:

Applying Definition (4) to (12) yields

(15)

F =

[

0 aµα
0 0

]

and V =

[

(β + wηδ ) 0
−k (γ + aµα + ρ)ε�

]

R0 =
aµαk

(ωηδ + β)(pε�+ aµα + γ )

(16)

L{CDυS(t)} = L{µ− αS(t)− aS(t)V (t)}

L{CDυ I(t)} = L{aS(t)V (t)− βψ I(t)− ωI(t)Z(t)}

L{CDυV (t)} = L{kI(t)− γV (t)− aS(t)V (t)− ρV (t)A(t)}

L{CDυA(t)} = L{ε + τV (t)A(t)− �A(t)}

L{CDυZ(t)} = L{η + cψ I(t)+ dI(t)Z(t)− δZ(t)}



































(17)
SυS(t)− Sυ−1S(0) = L{µ− αS(t)− aS(t)V (t)}

Sυ I(t)− Sυ−1I(0) = L{aS(t)V (t)− βψ I(t)− ωI(t)Z(t)}

SυV (t)− Sυ−1V (0) = L{kI(t)− γV (t)− aS(t)V (t)− ρV (t)A(t)}

SυA(t)− Sυ−1A(0) = L{ε + τV (t)A(t)− �A(t)}

SυZ(t)− Sυ−1Z(0) = L{η + cψ I(t)+ dI(t)Z(t)− δZ(t)}


































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Simplifying (13) yields

Taking the inverse Laplace transform of (14) yields

Assuming that the solution S(t), I(t),V (t), ,A(t),Z(t). 
are in form infinite series by

And nonlinear term involved in the model are S(t)V (t) , 
I(t)Z(t) are decomposed by Adomain.

where An, Bn,Cn are Adomain polynomial gives by:

Evaluating (19) by (20) and (21), applying the initial 
conditions and taking the inverse Laplace transform of 
(19) yields.

And

(18)

SυS(t) = Sυ−1S(0)+ L{µ− αS(t)− aS(t)V (t)}

Sυ I(t) = Sυ−1I(0)+ L{aS(t)V (t)− βψ I(t)− ωI(t)Z(t)}

SυV (t) = Sυ−1V (0)+ L{kI(t)− γV (t)− aS(t)V (t)− ρV (t)A(t)}

SυA(t) = Sυ−1A(0)+ L{ε + τV (t)A(t)− �A(t)}

SυZ(t) = Sυ−1Z(0)+ L{η + cψ I(t)+ dI(t)Z(t)− δZ(t)}



































(19)

S(t) = S−1S(0)+
1

Sθ
L{µ− αS(t)− aS(t)V (t)}

I(t) = S−1I(0)+
1

Sθ
L{aS(t)V (t)− βψ I(t)− ωI(t)Z(t)}

V (t) = S−1V (0)+
1

Sθ
L{kI(t)− γV (t)− aS(t)V (t)− ρV (t)A(t)}

A(t) = S−1A(0)+
1

Sθ
L{ε + τV (t)A(t)− �A(t)}

Z(t) = S−1Z(0)+
1

Sθ
L{η + cψ I(t)+ dI(t)Z(t)− δZ(t)}































































(20)S(t) =

∞
∑

n=0

Sn, I(t) =

∞
∑

n=0

In, V (t) =

∞
∑

n=0

Vn, A(t) =

∞
∑

n=0

An, Z(t) =

∞
∑

n=0

Zn

(21)

S(t)V (t) =

∝
∑

n=0

Bn, I(t)Z(t) =

∝
∑

n=0

Cn , V (t)A(t) =

∞
∑

n=0

Dn .

(22)

Bn =

1

Ŵ(n+ 1)

dn

dt

�

n
�

k=0

�
kSK

n
�

k=0

�
nVk

�

�,

Cn =

1

Ŵ(n+ 1)

dn

dt

�

n
�

k=0

�
k IK

n
�

k=0

�
nZk

�

�

Dn =

1

Ŵ(n+ 1)

dn

dt

�

n
�

k=0

�
kVK

n
�

k=0

�
nAk

�

�



















































So that the initial approximations are given by:

And the following recurrence formula in (24) is subse-
quently applied to obtain proceeding results

(23)

∞
�

n=0

Sn+1(t) = n1 + L−1

�

1

Sυ
L{µ− αSn(t)− aBn}

�

,

∞
�

n=0

In+1(t) = n2 + L−1

�

1

Sυ
L{aBn − βψ In(t)− ωCn}

�

,

∞
�

n=0

Vn+1(t) = n3 + L−1

�

1

Sυ
L{kIn(t)− γVn(t)− aBn − ρDn}

�

,

∞
�

n=0

An+1(t) = n4 + L−1

�

1

Sυ
L{ε + τDn − �An(t)}

�

,

∞
�

n=0

Zn+1(t) = n5 + L−1

�

1

Sυ
L{η + cψ In(t)+ dCn − δZn(t)}

�

.































































































,

S0 = n1, I0 = n2,V0 = n3,A0 = n4, Z0 = n5.
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Coding (24) into the Mathematica 12 software, we per-
form two iterations and the approximate system’s solu-
tion yields

(24)

∞
�

n=0

Sn+1(t) = L−1

�

1

Sυ
L{µ− αSn(t)− aBn}

�

,

∞
�

n=0

In+1(t) = L−1

�

1

Sυ
L{aBn − βψ In(t)− ωCn}

�

,

∞
�

n=0

Vn+1(t) = L−1

�

1

Sυ
L{kIn(t)− γVn(t)− aBn − ρDn}

�

,

∞
�

n=0

An+1(t) = L−1

�

1

Sυ
L{ε + τDn − �An(t)}

�

,

∞
�

n=0

Zn+1(t) = L−1

�

1

Sυ
L{η + cψ In(t)+ dCn − δZn(t)}

�

.































































































,

Results
Here, we examine the convergence of the 
obtained results. Using the following ini-
tial cell and parameter values [22] given by: 
s0 = 100, i0 = 16 , v0 = 12 , a0 = 0.5 and z0 = 10

µ = 80, α =
1
3 , a = 0.001, β = 0.5, ω = 0.1, 

k = 0.20, γ = 0.8 , ρ = 0.5964, ε = 1.402, τ = 1.219

, � = 1.251, η = 0.265, c = 0.01, d = 0.03, δ = 1   , 
we evaluate the model solution 
S(t) = 100− 79.53249333 t − 13.75435131t2

Convergence of solution
We evaluate the model output convergence to detect real-
istic and sustainable stable solutions. We state along with 

(25)

S(t) =

2
∑

n=0

Sn, I(t) =

2
∑

n=0

In, V (t) =

2
∑

n=0

Vn,

A(t) =

2
∑

n=0

An, Z(t) =

2
∑

n=0

Zn

I(t) = 16− 0.399160048 t − 0.2374262320t2

(26)V (t) = 12 − 0.694640 t − 0.1151445560 t2

A(t) = 1.0+ 0.878740t + 0.2276739078t2

Z(t) = 10.265 − 0.2150 t + 0.01627100000 t2

Table 2  Numerical results of third order convergence test

variables Formula Results

S(t) ξ1 = �s3�
/

�s2� 0.7571642474 < 1

I(t) ξ2 = �i3�
/

�i2� 0.6704672834 < 1

V(t) ξ3 = �v3�
/

�v2� 0.3538198319 < 1

A(t) ξ4 = �a3�
/

�a2� 0.6417106679 < 1

Z(t) ξ5 = �z3�
/

�z2� 0.1324782061 < 1

Fig. 1  Dynamics of uninfected cells due to varying level of CHIKV particles
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proof the following theorem which analyzes how the itera-
tive solutions converge.

Theorem  4:   Let be a mapping ξ : ̟ → ω defined on 
Banach spaces ̟ ,ω for all ξ ,ψ ∈ ̟ . Then there exists 
�ξ(ς)− ξ(ψ)�υ ≤ ε�ς − ψ�δ , 0 < ε < 1; ςδ+1 = ξ(ς0)

= ρ(ς0) for some convergent ς0 ∈ ̟ at a uniquely fixed 
point [43].

Proof:   We prove this theorem by defining a Picard 
sequence ςδ+1 = ξ(ς0) ⊆ k to show that the approxi-
mate result ςr converges in ζ∀ζ ≥ k .

Thus �ςδ − ςk� ≤ �ςδ − ςδ+1� + �ςδ+1 − ςδ+2�

+ ...+ �ςδ−1 − ςk�. By mathematical induction 
�ςδ − ςδ+1� ≤ εm�ς0 − ς1�. This shows that 
lim
k→∞

�ςδ − ςk� ≤
εm

1+ε
�ς0 − ς1� = 0 as m → ∞ . Hence 

ςδ contracts to ςk and this completes the proof.

Fig. 3  Dynamics of Infected cells to varying level of CHIKV particles

Fig. 2  Dynamics of infected cells with respect to varying level of CTL 8
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Lemma 1:  Without provision of an exact solution to the 
mathematical model, the fixed point theorem cannot be 
applied to check the model’s convergence to a uniquely 
fixed point [43].

Proof:  According to demonstration and application in 
He [36], Ayati [37] and Biazar [35], for every n ∈ N  , solu-
tion Wn converges provided that 0 ≤ εn < 1 when.

(27)εi =

{

�Wi+1�

�Wi�
�Wi� �= 0

0 �Wi+1� = o

Applying (19) to (20) the following results on Table 2 
are obtained.

The results presented in Table 2 not only validate the 
theorem but also confirm Laplace Adomian Decom-
position Method (LADM). A comparison of result 
between Homotopy Perturbation Method (HPM) and 
Laplace Adomian Decomposition Method (LADM) 
from [38] indicates it is the best method for numeri-
cal simulation. This validation assures the accurate 
predictions of cell interaction and development during 
numerical simulations.

Fig. 4  Dynamics of infected cells to varying concentration of CTL particles escalates

Fig. 5  CHIKV particle concentration with varying rate of antibodies
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Numerical simulation
The following graphs are the outcome of the numerical 
experiments performed using the model results.

Discussion
The experimental findings presented in Figs. 1 through 
12 shed light on the relationship between Chikungu-
nya virus (CHIKV) infection and the host immune 
response. Figure  1 unveils a significant insight: as 
the consumption rate of uninfected cells by CHIKV 

particles increases. The results reveal impact of CHIKV 
particles on cell survival at a = 0.1 , the decline is slow, 
whereas for a = 1 the decrease is steepest, suggesting 
a higher viral load leads to accelerated infection pro-
gression, there is a notable decrease in the population 
of uninfected cells. This observation underscores the 
pivotal role of CHIKV particle consumption in deter-
mining the fate of uninfected cells during infection, 
marking a critical juncture where the virus establishes 
itself within the host system. In Fig.  2, the dynamics 

Fig. 6  Dynamics of CHIKV population with increased level of CHIKV particles

Fig. 7  Dynamics of infected cells to varying antibody particles
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of infected cells undergo a profound reduction with 
an increase in cytotoxic T lymphocyte (CTL) rate. At 
lower CTL levels w = 0.1 , the reduction in infected cells 

is slow, whereas for higher CTL level w = 1 , the decline 
is more pronounced. This finding emphasizes the cru-
cial role of CTLs in combating CHIKV infection by 

Fig. 8  Fractional order dynamics of uninfected

Fig. 9  Fractional order dynamics of antibodies concentration in host
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targeting and eliminating virus-infected cells, thereby 
restraining the spread of the virus within the host. Fig-
ure  3, gives insight into viral propagation dynamics 
reveals a positive correlation between the concentra-
tion of CHIKV particles and the population of infected 
cells. Specifically, after 23  days it shows the virulent 
nature of CHIKV, demonstrating its ability to replicate 
and infect host cells with heightened viral loads. In 
contrast to Fig. 3, Fig. 4 highlights the immune system’s 
effectiveness in combating CHIKV infection, showing a 

decrease in the population of infected cells as the con-
centration of CTL particles increases. This emphasizes 
the pivotal role of the immune response, particularly 
CTLs, in limiting the spread of CHIKV within the host 
system. In Fig. 5, the role of antibodies in neutralizing 
viral particles was illustrated, a decrease in CHIKV par-
ticle concentration with an increase in antibody parti-
cles was observed. The figure shows a decreasing trend 
in the infected cell population, with higher antibody 
response rate ρ = 1 leading to a more rapid decline 
compared to lower rates ρ = 0.1 . This underscores 

Fig. 10  Fractional order dynamics of infected

Fig. 11  Fractional order dynamics of CHIKV population
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the crucial function of antibodies in the host defense 
mechanism, effectively neutralizing viral particles and 
impeding the progression of CHIKV infection. Figure 6 
shows a positive feedback loop in CHIKV replication 
wherein an increase in CHIKV particle concentra-
tion leads to heightened replication and production of 
viral particles. This sheds light on the complex inter-
play between viral replication dynamics and infection 
progression. Figure  7 emphasizes the delicate bal-
ance within the immune system, showing an increase 
in infection rate as antibody particles τ are consumed 
at a faster rate for τ = 0 reaching approximately 1.95 
infected cells at 15  days and τ = 1 approaching 2.0 
infected cells by 15  days. This observation highlights 
the critical role of antibodies in controlling CHIKV 
infection, with a depletion of antibodies leading to 
an escalation in infection rates. The fractional order 
analysis results were depicted in Figs. 8 through 9. The 
results reveals a varying distributions of different cells 
at different levels of ν . Particularly, Fig. 8 demonstrates 
an enhancement in the population and concentration 
of susceptible and CTL cells, associated with increased 
antibody consumption (Fig. 9) and reduced concentra-
tions of infected cells (Fig.  10) and CHIKV particles 
(Fig. 11). This finding aligns with the results presented 
in [22], which stressed the importance of incorporating 
memory effects to comprehend the dynamics of bio-
logical models. The observed phenomenon could result 
in a faster decline in concentrations of infected mono-
cytes, emphasizing the biological significance of inte-
grating fractional-order analysis (Fig. 12).

Limitations
Although all data generated or analyzed during this 
study are included in [22], certain limitations should be 
acknowledged:

1.	 Sample Size The small sample size together with 
restricted data scope leads to unknown limitations 
regarding the findings’ ability to extend across differ-
ent populations.

2.	 Data Collection Constraints Regrettably some study 
data was acquired under restricted settings such 
as restricted access or missing information or self-
report mechanisms that led to potential inaccuracies 
or biased results.

3.	 Computational Limitations While the results of this 
research show the benefit of applying fractional cal-
culus to biological models, limitations include the 
restriction of usage to symbolic computation soft-
ware, which may not always be available or efficient 
for large-scale or real-time applications.

Conclusion
To conclude, this study underscores the crucial impor-
tance of integrating memory effects into mathematical 
models. It demonstrates that immunity levels fluctuate 
across various fractional orders, highlighting its rele-
vance in managing physical diseases. Specifically focus-
ing on adaptive immunity, the study emphasizes the 
pivotal role of immune memory from prior treatments 
or vaccinations in combating the Chikungunya virus. 

Fig. 12  Fractional order dynamics of CTLs concentration in host
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It suggests boosting CTLs and antibodies through 
healthy diets or vaccines. While the results of this 
research shows the benefit of applying fractional cal-
culus to biological models limitations include usage 
restriction to symbolic software. The research provides 
essential knowledge about the applicability of Laplace 
Adomian decomposition method and fractional deriva-
tives within disease modeling for both prediction and 
description purposes.
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