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Abstract 

Objectives Several methods of cut‑point selection for biomarkers have been suggested in biomedical research 
but the superiority of them over others was not studied comprehensively under different pairs of distributions, 
degree of overlap, and the ratio of sample sizes. This simulation study was aimed to compare five popular methods 
with application of clinical examples.

Results The data of simulation was generated from the 12 configurations of binormal, bigamma, and biexponen‑
tial pairs with different sample sizes The results showed that the four popular methods of Youden, Euclidean, Prod‑
uct, and Index of Union (IU) yielded identical optimal cut‑point under binormal model with homoscedastic. While, 
with high AUC, the Youden may produce less bias and MSE, but for moderate and low AUC, Euclidean has less bias 
and MSE than other methods. The IU yielded more precise findings than the Youden for moderate and low AUC 
in binormal pairs, but its performance was lower with skewed distributions. In contrast, the cut‑points produced 
by diagnostic odds ratio (DOR) were extremely high with low sensitivity and high MSE and bias. The results of clinical 
data showed that when AUC > 0.95, the five methods may produce identical cut‑point, but DOR yields an extremely 
high value of cut‑point for AUC < 0.95.

Keywords Youden, Euclidean, Product, Index of Union, Diagnostic odds ratio, Optimal cut‑point, ROC analysis

Introduction
One of the important applications of ROC curve is to 
determine the optimal cut-off point for quantitative 
biomarkers [1, 2]. However, there is no single method for 
determining the optimal cut-point. Several methods of 
cut-point selection have been developed based on ROC 
curve analysis [3–5]. A reasonable subset of the most 
famous of them are Youden, Euclidean, Product, Index 
of union, and diagnostic odds ratio (DOR). Some of 
them are widely used in medical research for biomarkers 
in diagnosis and predicting outcomes. Each of these 
methods are defined using unique definition based on 
object function criteria in ROC space. The clinicians 
need to better understand the accuracy and precision of 
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the proposed methods in clinical practice. Consistency 
and inconsistency of results of cut-point are possible in 
some conditions of screening test results [6]. This may 
depend on underlying distributions of test results in 
diseased and non-diseased and degree of separation of 
pairs of distributions. However, limited data is available 
for this matter and the question is which of the proposed 
methods determines the optimal cut-point precisely and 
more accurately? A few studies have been conducted 
based on the population-based distributions of 
diagnostic test data [6], as well as simulation study from 
a limited pair of distributions [7–12]. In some studies, 
inconsistency in determining the cut-off point was shown 
between some methods [13]. In other simulated studies, 
limited cases of certain distributions have been mainly 
addressed, and the impact of the size of the diagnostic 
accuracy and the inequality of the variances and the 
inequality of the sample size and the degree of severe 
skewness in the estimation of bias and MSE have not 
been widely evaluated.

There are several clinical examples that motivate 
the topic of biomarkers in early diagnosis of diseases 
and health-related outcomes in modern medicine. For 
example, premature rupture of membrane (PROM) 
refers to the rupture of the ammoniatic sac before labor 
begins that has been reported in 3–18% of pregnancies 
[14]. PROM increases the risk of perinatal mortality 
and accounts for approximately 18–20% of perinatal 
fetal deaths in the United States [15] and it is the cause 
of approximately one third of all premature births in 
America [16]. Its accurate diagnosis is important because 
failure to recognize it can lead to obstetric complications 
such as chorioamnionitis, premature birth, maternal and 
fetal infections, and prolapsed umbilical cord [17]. On 
the other hand, improper diagnosis of PROM can lead to 
unnecessary interventions such as hospitalization [18]. 
Some diagnostic methods such as nitrazine, pooling and 
Fern test, measuring vaginal diamino oxidase, prolactin, 
a-fetoprotein, insulin-like growth factor-binding protein 
1, fetal fibronectin and placental 1 α-macroglobulin 
are currently available [19]. Tests such as nitrazine and 
pooling are expensive, and less used as screening tests. 
They are considered as our gold-standard. Laboratory 
biomarkers such as Beta-human chorionic gonadotropin 
(B-HCG), urea (BUN) and creatinine (Cr) are used as 
PROM screening tests [20, 21]. There was no a clear 
clarification of the methods in their cut-point selection. 
Therefore, the aim of this study is twofold. Beyond the 
simulation of data from different configurations of pairs 
of distributions and comparing the different methods of 
cut-point election, another aim is the clinical application 
in “Illustrations and applications with clinical examples 
of data” section.

Methods
Simulation study
Data was generated by R software in pairs of diseased and 
non-diseased distributions of bi-normal, bi-gamma, bi-
exponential with certain parameters shown in Fig. 1 (12 
panels A to L) with sample size and degree of accuracy 
with equal and unequal variance in 1000 runs. In each 
pair, the certain parameters were deliberately established 
that the area under the curve (AUC) is in the range of: 
low (AUC = 60), medium (AUC = 75), high (AUC = 90), 
which is the degree of overlap between pairs of distribu-
tions. The samples were produced in equal sizes of 50/50, 
100/100, and 200/200, and unequal sizes of 50/100, 
50/150, and 50/200 in the diseased and nondiseased pop-
ulation respectively that is a disease prevalence of 0.33, 
0.25, and 0.20 respectively.

Statistical methods for the optimal cut‑point
We focused on a subset of the five most popular meth-
ods, including Youden’s J statistics, Euclidean distance, 
Product method, Index of Union (IU), and diagnos-
tic odds’ ratio (DOR). The full statistical descriptions 
have been illustrated elsewhere in detail [5]. In brief: (1) 
C-Youden = Max (Se (c) + Sp(c) − 1) that maximizes the per-
cent of net classification that is clinically interesting [4]. 
(2) C-Euclidean = Min{Sqrt[(1 − Se(c)]2 + [1 = Sp(c)]2} that 
minimizes the Euclidian distance between the point on 
ROC curve to right corner (1, 0) in ROC space [10]. (3) 
Liu’s method that maximizes the product of Se (c) and 
Sp (c) which is also known as Product methods [3]. (4) 
C-Union = Min |Se(c) − AUC| +|Sp(c) − AUC|. This cri-
terion minimizes the difference between Se and Sp and 
also the difference of the sum of Se and Sp by 2 times that 
AUC [7]. (5) C-DOR that maximizes the ratio of the posi-
tive likelihood to the negative likelihood. The latter index 
as a ratio metric has more fluctuations and its shape is 
convex under some distributional assumptions of diag-
nostic test results [5, 6, 22].

Determining the true optimal cut‑points
First, we calculated the true values of cut-points with 
five methods under the parameters of different pairs of 
distributions that were presented in Fig.  1 by analytical 
calculating sensitivity (Se) and specificity (SP), and AUC 
for all possible cut-off values of decision scale using 
the Excel 21.0. The optimal cut-points were selected by 
maximizing or minimizing the related metrics depending 
on the methods used.

Appraisal of five different methods of cut‑point selection
The performance of the estimates of cut-points were 
assessed by bias, relative bias (RB), mean square errors 
(MSE), the coverage rate of confidence interval (CI) 
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Fig. 1 Density plot of pairs of various distributions of nondiseased and diseased groups with different parameters
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for true parameter of cut point, and mean length of CI. 
The average of cut-points was estimated in 1000 runs 
of datasets. Then the bias, relative bias and MSE were 
estimated. Their estimates were calculated by their 
empirical estimators in 1000 runs of data generated. For 
example, the empirical estimator of bias is determined 
by the average of estimated cut-points in 1000 runs 
minus the true value for each method respectively etc. In 
addition, in order to examine the percentage of coverage 
of true parameter of cut point, we applied the bootstrap 
resampling technique. To calculate the bootstrap 
estimate of cut- point of ĉ and its standard deviation 
(SD), a random sampling with replacement was drawn to 
generate 200 bootstrap samples in in all configurations 
of distributions. Furthermore, to generate a 95% CI for 
the optimal cut point, the percentile method was applied 
considering the 2.5th and 97.5th percentiles of the 
bootstrap distribution of ĉ.

In cross-validation of the findings, first we performed 
our R code program with the parameters of distributions 
used by Unal [7] to generate data and then the outputs 
of our program were compared with those reported 
by Unal. If our outputs differ from those reported, we 
reexamined the R code program, repeating until the 
outputs become similar to those reported.

Ethical considerations
The study protocol was approved by the ethical Board of 
Babol University of Medical Sciences, Babol, Iran (Ethical 
code: IR.MUBABOL.HRI.REC.1402.308). The informed 
consent was obtained from all participants reported in 
“Illustrations and applications with clinical examples of 
data” section.

Results of simulation
Bi‑normal model
Table  1 presents when data is generated from a 
homoscedastic binormal model. The least bias was 
found by Euclidean method and followed by Product, 
IU, Youden and DOR while the least MSE was observed 
by IU methods for low and moderate AUC, but Youden 
and Euclidean for high AUC. In all configurations of 
binormal model, both bias and MSE, as one expected, 
declined with higher sample size except for DOR. For 
a given sample size, the lowest bias and MSE were 
found by high AUC. The highest bias, relative bias 
and MSE are related to DOR as well, which is almost 
unacceptable. The bottom of Table 1 shows the results 
when data was generated with unbalanced sample size. 
The IU method has the lowest bias and is followed by 
product, Euclidean, Youden, and DOR. For unequal 
sample sizes. Unless the Youden, the MSE and bias of 

Euclidean, Product, and IU are lower for equal sample 
sizes than unequal for all configurations of degree of 
overlap. However, surprisingly, for Youden, the bias of 
equal sample size appeared to be higher than unequal 
sample sizes but not for a high AUC. The Youden index 
produced the less precise estimates of cut-points in 
particular for low and moderate AUC than the three 
other methods with relatively higher bias and MSE but 
not for high AUC. Overall, the highest MSE and bias 
were found by DOR in all configurations.

Table 2 indicates the results when data was generated 
by binormal model with non-homoscedastic. The IU 
method resulted the lowest MSE for low and moderate 
AUC but the Euclidean index yielded the lowest MSE 
for high AUC. While, the product method has the 
lower bias but a similar MSE with IU and Euclidean. 
The IU method produced the least MSE and bias that 
were followed by Euclidean and Product method. The 
results of coverage rate with homoscedastic binormal 
data, indicated that the four popular methods had a 
similar coverage rate of CI for true parameter of cut 
point ranging from 94 to 99% for equal and unequal 
sample size depending on AUC and sample size used 
but DOR had very poor coverage rate which none of CI 
did cover the true value of cut point at all. However, the 
IU methods had the smaller mean length of CI but the 
DOR had the highest value of mean length of CI (see 
Appendix in Table 1.b and Table 2.b).

Bi‑gamma distributions
Table 3 presents the findings when data was generated 
by very skew pairs of distributions of Gamma with 
equal and unequal sample size. For balanced sample 
size, the least bias was found by Euclidean and it was 
followed by Product method, the Youden index, IU, 
and DOR but among the four popular methods, the 
greatest MSE was found by the Youden and the least 
by the Euclidean. For unequal sample size, similarly 
the greatest bias and MSE were attributed to IU and 
Youden respectively among the four methods while 
the Youden index had the least biased. The Euclidean 
is more precise than Youden index but the Youden 
was less biased. Similar to other pairs of distributions, 
the worst appraisal was found by DOR with extremely 
high MSE, bias and relative bias. The coverage rate of 
bootstrap CI for true values of cut point ranging from 
95 to 98% have been observed using the three methods 
of Youden, Product, and Euclidean. However, the 
coverage rate of CI was declined from 77 to 89% for 
IU method. Meanwhile none of bootstrap CI did cover 
the true cut point by DOR method (see Table  3.b in 
Appendix).
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Bi‑exponential distributions
Table  4 shows the appraisal findings with data of an 
extremely skew distributions of exponential pairs. The 
lowest bias was found by the Euclidean that followed by 
Product, IU, Youden and DOR respectively. The Euclidean 
has the lowest MSE that were followed by product, IU 
and Youden index. The Youden had the high MSE but 
IU had low MSE at low AUC. For unequal sample size, 
the lowest bias and MSE were observed by the Euclidean 
method. Similar to other scenarios, an extremely high 
MSE, and bias were found by DOR for all combinations. 
Overall, the extremely deviation of binormality, the bias, 
and MSE of all methods substantially increased. In this 
case, the least bias and MSE were observed by Euclidean. 
Moreover, the three methods of Youden, Euclidian, and 
Product had the high coverage of CI ranging from 95 
to 98% while the IU produced the lower coverage rate 
ranging from 79 to 91% depending on the AUC and 
sample size used. Meanwhile, the poor performance of 
DOR has been observed in terms of coverage rate and 
mean length of CI (see Table 4.b in Appendix).

Illustrations and applications with clinical 
examples of data
Data
In a case control study of pregnant women in the third 
trimester of pregnancy suspected of having PROM were 
included in the study. These pregnant women were 
referred to the emergency obstetrics and gynecology 
clinic of Ayatollah Rouhani hospital in Babol, the north of 
Iran [19]. Based on the gold standard test status, 60 cases 
with PROM and 60 healthy individuals without PROM 
were diagnosed. Briefly, first, the informed consent 
was obtained from all patients. The full description of 
inclusion and exclusion criteria were described elsewhere 
[19]. Pregnant women who were diagnosed as negative 
in one of two gold standard tests of pooling or nitrazine 
were excluded from the study as suspicious subjects. 
Mothers who tested positive for both of these two tests 
were diagnosed with definite PROM (n = 60), and those 
who tested negative in both tests were considered as true 
negative (n = 60). The three biomarkers of BHCG, BUN, 
and Cr, by enzymatic photometry and Jafee methods and 
the results were recorded in PROM diagnostic database.

Results of cut‑point selection of biomarkers
Figure 2 depicted the density function of three biomark-
ers in pregnant women with and without PROM in panel 
A, B, and C. The results Wilcoxon rank test showed 
that the values of biomarkers are significantly higher in 
PROM than without PROM (P = 0.001) and a higher SD 
of biomarkers were observed in PROM patients. Fig-
ure  3 shows the nonparametric ROC curve for BHCG, 

BUN, and Cr for diagnosis of PROM with a high diag-
nostic accuracy. In Fig. 3, the highest AUC (AUC = 0.992, 
95%CI: 0.963, 0.998) was found by BHCG and followed 
by BUN (AUC = 0.975, 95%CI 0.929, 0.991), and Cr 
(AUC = 0.954, 95%CI 0.904, 0.978). In Table 5, the results 
show that for BHCG, and BUN, the five methods pro-
duced the identical cut-points (BHCG (44  IU/L), and 
BUN (1.07  mmol/L) while for CR, the DOR resulted in 
an extremely higher value of cut-points (40.66  µmol/L) 
with low sensitivity but the cut-point selection of the 
four other methods are identical (21.22 µmol/L). Figure 4 
shows the changes in five metrics of cut-point selection 
over various cut-off values by different methods that 
have been shown with different colors in three panels for 
BHCG, BUN, and Cr.

Discussion
Our findings show that the IU method has the lowest 
bias, relative bias and MSE than other methods when 
data are generated from binormal model but not for a 
highly skew distribution of bigamma and biexponential 
pairs. The part of results related to the pairs of binormal 
model are in accordance with those reported by Liker 
Unal [7]. However, we found the poor performance of 
IU methods when data is generated from bigamma and 
biexponential pairs that was highly skewed. The IU may 
have a clinical interpretation in diagnostic appraisal. It 
simultaneously minimizes the difference between Se and 
Sp and also minimize the difference of either Se or Sp 
with AUC. This property might be clinically interesting in 
terms of diagnostic accuracy for cut-point selection.

On the other hand, the most popular method of 
Youden index that has a greater clinical interpretation in 
terms of net classification, the corresponded cut point is 
less precise especially for low and moderate AUC even 
under binormal data with equal sample sizes but nor 
for high AUC, and its bias and MSE are almost higher 
than Euclidean and product methods. The diagnostic 
performance of these two latter methods outrages than 
others with highly skewed distributions of diagnostic 
test results. While the product method maximizes the 
product of Se and Sp that might be interested clinically. 
Based on our findings, the more precise estimate of cut-
point is estimated by Euclidean. These results are also 
in accordance with other reports [7, 8, 10]. Despite the 
higher precision and less biased of the Euclidean in some 
scenarios, it has less clinically interpretations.

Among the five methods of cut-point selection in this 
study, the worst method was DOR in term of extremely 
high bias and MSE and very low performance of coverage 
of CI for true cut point in all configurations of distribu-
tions studied. In a population-based distributions under 
different scenarios, it has been reported by Hajian-Tilaki 
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[6] that DOR produced unexpected high cut-point with 
poor Se because the convex pattern of DOR as ratio met-
rics [22]. Even under the bilogistic model DOR metric 
might be noninformative or have a linear trend that has 
not produced a proper optimal cut-point [6].

As one expected, in our simulation, the bias and MSE 
of all methods except for DOR, declined with increasing 
sample sizes and the higher degree of accuracy. From 
statistical perspective, the amount of data in term of 

sample sizes provides the more precise estimate and 
also less biased estimates of cut point. Meanwhile the 
high degree of separation pairs of distribution (or high 
AUC) leads to less room for sampling variability in 
ROC space. Therefore, the more precise estimates of 
cut-points are estimable in this scenario as our finding 
demonstrated. In particular, the results of current study 
showed the higher precise estimates and less biased 
with a high AUC by the Youden index.

Fig. 2 The density plot of three biomarkers of BHCG, BUN, and Cr in healthy and PROM groups

Fig. 3 Empirical ROC curve of three biomarkers of BHCG, BUN, and Cr in diagnosis of PROM
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Moreover, we found, the inconsistency in determining 
true cut-points by different methods in particular with 
highly skew pairs of distributions. With binormal pairs 
and homoscedastic variance, the consistency of true 
cut-points values is possible but not for unbalanced vari-
ance and by the DOR. However, in analysis of our clini-
cal example of data of biomarkers for diagnosis of PROM, 
surprisingly, identical results of cut-point were observed 
by five different methods for BHCG and BUN with 
AUC = 0.992 and AUC = 0.975 respectively. These identi-
cal results of all investigated methods can be explained by 
very high diagnostic performance of these two biomark-
ers. In this scenario, with extremely high diagnostic accu-
racy, there are less room in ROC space for variation of 
cut-points by different methods. In contrast, the incon-
sistency of cut-point by DOR with other methods in our 
simulation was present because the highest AUC in our 
simulation was considered as AUC = 0.90 but in our clini-
cal example of detection PROM, the AUC for these two 
biomarkers were greater than 0.95. While for Cr that its 
diagnostic performance was lower than BHCG and BUN, 

the estimated cut-point of Cr by DOR was substantially 
higher than other methods with low performance of Se. 
Overall, the four competitive methods yielded identical 
results of cut-point for Cr as well but not DOR.

To our best knowledge, the design and results of the 
current simulation study are novel in terms of different 
configurations of distributions of diagnostic test results. 
So far, the other published simulation studies have 
not included the more extreme skew distributions 
with different degrees of overlapping pairs with five 
different methods simultaneously as we studied. Further 
simulation studies with other pairs of distributions may 
need to explore the performance of the different methods 
in other conditions.

Conclusion
Despite the clinical interest property of the Youden 
index, it may not produce a more precise estimate 
of the optimal cut-point for severe departure from 
binormality, in particular for low and moderate AUC. 
The greatest deviation from binormality, the bias and 

Table 5 The diagnostic performance of cut‑point of three biomarkers in diagnosis of PROM by different methods

Biomarker Methods Cut‑point Se (95%CI) Sp (95%CI) PPV (95%CI) NPV (95%CI) LR+ (95%CI) LR− (95%CI)

BHCG (IU/L) Youden
Euclidian
Product
IU
DOR

44.00 0.98 (0.91, 0.99) 0.98 (0.91, 0.99) 0.98 (0.91, 0.99) 0.98 (0.91, 0.99) 59.00 (8.43, 411.32) 0.02 (0.01, 0.12)

BUN (urea) 
(mmol/L)

Youden
Euclidian
Product
IU
DOR

1..07 0.93 (0.84, 0.98) 0.97 (0.88, 0.99) 0.96 (0.88, 0.99) 0.93 (0.84, 0.98) 28.00 (7.16, 109.67) 0.07 (0.03, 0.18)

Cr (µmol/L) Youden
Euclidian
Product
IU

21. 22 0.92 (0.82, 0.97) 0.92 (0.82, 0.97) 0.92 (0.82, 0.97) 0.92 (0.82, 0.97) 11.00 (4.74, 25.56) 0.09 (0.04, 0.21)

DOR 40.6 6 0.68 (0.55, 0.80) 0.98 (0.91, 0.99) 0.98 (0.87, 0.99) 0.76 (0.65, 0.85) 41.00 (5.81, 287.93) 0.32 (0.22, 0.47)

Fig. 4 The changes of five metrics of cut‑off selection versus various cut off values of biomarkers BHCG, BUN, and Cr in diagnosis of PROM in panels 
of A, B and C, respectively
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MSE increased substantially in all methods. In a case, 
data generated from very skewed distributions of 
bigamma and biexponential, the lowest bias and MSE 
resulted from the Euclidean index and the highest 
yielded by DOR and IU, and Youden respectively. The 
precision and bias in estimating cut points by different 
methods may depend on the underling distributions 
of test results and AUC s, and the sample size used. 
However, the DOR has an extremely poor performance 
with very high bias and MSE, and very low coverage 
rate.

Limitations
The various methods for determining optimal cut-
points optimize different objective functions and 
they have their own true cut-points. In many cases, 
the choice of the objective function is understood to 
depend on the specific purpose of the study either may 
focus on more weighting sensitivity or specificity, or the 
cost of false positives and false negatives or to maximize 
the sensitivity at a given value of the specificity. The 
objective function that has been defined as a criterion 
for cut-point selection has been criticized in the 
literature [23]. Moreover, our simulation was limited to 
the prevalence of 0.20, 0.25, 0.33, and 0.50 for diseased 
based on the ratios of sample sizes were considered in 
the study. In practice, the prevalence might be less than 
0.20. However, the classical accuracy-based methods of 
cut-point selection are not influenced by the prevalence 
of disease, whereas its diagnostic performances as 
positive predicted value and negative predicted value 
are affected.

Abbreviations
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