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Introduction
DNA methylation can be analyzed on a large scale in 
methylome-wide association studies (MWAS), which 
measure the statistical association between methylation 
levels and a phenotype, similar to the process of genome-
wide association studies (GWAS) [1, 2]. Methylation 
scores (MS) are constructed from MWAS results, analo-
gous to polygenic risk scores (PRS) in GWAS. This cre-
ates a single score as a way of interpreting the association 
study.

MS have shown promise in the study of complex men-
tal disorders such as schizophrenia [3]. We recently 
showed that 3.5% of schizophrenia phenotypic variability 
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Abstract
Objective  This study sought to determine if the R package LDpred2, designed for polygenic risk score creation for 
genome-wide association studies using summary statistics, could be adapted for deriving DNA methylation scores 
from methylome-wide association studies. Recognizing that linkage disequilibrium, used as prior in LDpred2, does 
not apply to methylation, we explored co-methylated regions and topologically associating domains as alternative 
structural priors for correlation between methylation sites. A genomic sliding-window approach was also tested. 
The performance of the LDpred2-based models was evaluated on methylation data from schizophrenia and control 
samples (N = 1,227).

Results  LDpred2 models employing topologically associating domains and sliding window clusters as priors 
performed similarly to existing methods, explaining approximately 3.6% of schizophrenia phenotypic variance. The 
co-methylated regions model underperformed due to insufficient clustering of probes. The similarity in performance 
between the model using topologically associating domains and a null model consisting of random clusters 
suggests that the structural information provided by these domains enhances performance only marginally. In 
conclusion, while LDpred2 can be adapted for methylation data, it does not substantially enhance methylation score 
performance over existing methods, and the choice of structural prior may not be a critical factor.
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could be explained by methylation using a pruning and 
thresholding (P + T) method for computing MS [4]. How-
ever, there are several advanced methods, developed for 
PRS, outperforming P + T, that have yet to be tested for 
MS [5–7]. Many of these methods use summary statis-
tics, which enable pooling of data from multiple stud-
ies, and employ techniques such as Bayesian regression, 
regularized linear regression, and Markov chain Monte 
Carlo algorithms. One of the most popular and best-
performing implementations of such a method is the R 
package LDpred2, which utilizes a Gibbs sampler using 
external reference linkage disequilibrium (LD) correla-
tion maps as prior [8, 9].

Here, we aimed to adapt LDpred2 for methylation data 
and compare the resulting MS with the hitherto best-per-
forming P + T method mentioned above. To this end, the 
study comprised the following objectives:

I)	 Finding a suitable substitute for LD as a prior, since 
LD does not structurally characterize methylation. 
Co-methylated regions (CMRs) and topologically 
associating domains (TADs) were tested as priors 
[10, 11].

II)	Creating MS using these priors with LDpred2 from 
schizophrenia MWAS summary statistics [4], to 
facilitate comparison with the P + T method.

III)	 Evaluating the results using the same process as 
Tesfaye et al. [4], by regressing the MS against the 
known phenotypes, obtaining a pseudo R2-value for 
the model.

Main text
Data
The training data (N = 2,015) for the LDpred2 MS mod-
els was obtained from the EWAS meta-analysis of 
schizophrenia described in our previous publication [4]. 
Pre-processed individual-level peripheral blood meth-
ylation data from schizophrenia and control samples 
from the NORMENT TOP sample was used as test data 
(N = 1,227) [12]. The test data methylation betas have 
been residualized, removing the effects of the covariates 
age, smoking scores, estimated cell-type proportions, 
batch effects, genotype principal components, methyla-
tion principal components, and surrogate variables [4].

Methods
The following R packages were used: CoMeBack version 
0.1.0, bigsnpr version 1.12.2, which includes bigstatsr and 
LDpred2 [10, 13].

LDpred2  LDpred2 uses a Gibbs sampler with a Bayes-
ian approach, where posterior effect sizes are calculated 
from GWAS summary statistics and an LD prior [5]. The 
LDpred2 workflow allows for use of a pre-specified set of 

LD blocks from an external reference, instead of the stan-
dard sliding-window approach. A critical aspect of this 
method is the use of a probe-probe pairwise sparse cor-
relation matrix.

CoMeBack  CoMeBack calculates CMRs and assigns 
probes based on genomic proximity and correlation in 
methylation levels from a test set [10]. The package also 
considers the number of known methylation sites between 
the probes to define a CMR. Important settings in CoMe-
Back are corlo: the probe-probe correlation threshold, 
maxprbdst: the maximum distance between probes, and 
corlodst: the maximum distance between inter-probe 
CpGs.

Implementation
The models were created using the LDpred2-auto func-
tion, which infers the hyperparameters h2 and p inter-
nally and does not require a validation set [5]. Correlation 
matrices were created by clustering the probes in the 
test set using the processes described below, and by cal-
culating the pairwise probe-probe Pearson correlations 
in methylation levels within each cluster or block. Only 
probes common to both the training and the test set were 
used in the analysis.

Co-methylated regions
CoMeBack was used to create CMR clusters with the 
following lenient settings, to allow for as many probes 
as possible to cluster, while keeping the thresholds rea-
sonable: corlo = 0.2, maxprbdst = 100,000  bp, and cor-
lodst = 800 bp. These clusters were used as blocks in the 
correlation matrix. A second matrix was created using 
only the non-singleton clusters from this analysis, i.e. 
clusters containing two or more probes. The h2-value 
produced in the pipeline was negative for the non-sin-
gleton matrix, which is not allowed in the Gibbs sampler. 
Therefore, the h2-value was set to 10− 5 in this analysis 
before proceeding.

Sliding window approach
The CoMeBack pipeline was modified to only consider 
genomic proximity, by setting corlo = 10− 10, effectively 
creating a sliding window process which clusters probes 
on each chromosome. Bypassing the correlation element 
is not a major issue since the correlations are taken into 
account in the LDpred2 Gibbs sampler when calculating 
the posterior effect sizes [5]. Six versions were created 
with window sizes 5 kilobases (kb), 10 kb, 20 kb, 100 kb, 
500 kb and 1 megabase (Mb). Both maxprbdst and cor-
lodst were set to the respective window size in each 
analysis. Correlation matrices were produced using these 
clusters as blocks.
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Topologically associating domains (TAD)
The TAD scaffold created by Rohit & Bonnie [14] was 
acquired on March 15, 2024, and converted to genome 
build hg19 using USCS Liftover with standard settings 
[15]. The scaffold contains consensus start and end posi-
tions of TADs in each chromosome, calculated by com-
bining information from seven different human cell types 
[14]. Since the test data comes from blood samples, which 
contain several cell types, a consensus scaffold was cho-
sen rather than a cell-specific one. The rationale behind 
this was that a general mapping would be more robust 
compared to a cell-specific mapping, since the exact cell 
composition in the samples are not known. The probes 
in the test set were then mapped to the TADs using their 
genomic locations obtained from the Illumina 450k and 
EPIC manifests included in the CoMeBack package, and 
the resulting 2880 clusters were used as blocks in the 
matrix.

Random clusters
To assess the results from the TAD clusters and deter-
mine if the structural information in the TADs con-
tributed to the model, ten sets of random clusters were 
created and used for matrix blocks as a null model. The 
observed distribution of the number of probes in the 
2,880 TAD clusters was found to be characterized by 
the following statistics: min = 1, Q1 = 45, median = 82, 
mean = 118, Q3 = 138, and max = 2,690. This suggests a 
log-normal distribution, so to roughly correspond to the 
observed distribution in the TAD clusters, the number 
of probes (P) in the random clusters was drawn from the 
distribution P ~ LogNorm(mean = log(82), SD = 0.7). The 
number of clusters (C) in each random set was drawn 
from the distribution C ~ Norm(mean = 2880, SD = 144), 
to ensure that each random set contained roughly the 
same number of clusters as the TAD set. P probes were 
then randomly assigned to the C clusters in each set.

Applying and evaluating scores
The scores were calculated by the multiplication S = MTβ, 
where S is the scores, M(probes x samples) is the methylation 

levels from the test set and β is the posterior effect sizes 
from the LDpred2 Gibbs sampler. The scores were then 
evaluated by performing logistic regression of the scores 
against the known schizophrenia phenotypes for the 
samples in M, following the procedures described previ-
ously [4]. A Nagelkerke R2-value was calculated from the 
regression [16]. P-values and AIC values from the logistic 
regression were also included in the evaluation.

Results & discussion
Two priors were tested with LDpred2 for creating MS: 
CMRs and TADs. Two models were created using the 
CMR prior: one including singleton clusters, and one 
excluding them. Additionally, sliding window models 
were created with CoMeBack using six different window 
sizes (5 kb, 10 kb, 20 kb, 100 kb, 500 kb and 1 Mb). Ten 
sets of random clusters were created as a null model for 
the TAD-based clusters. The models were compared to 
the existing P + T model using logistic regression. The 
performances of the TAD-based model, the sliding win-
dow models, and the random cluster models were almost 
identical to the P + T model (Table 1).

The CMR-based model which included singleton clus-
ters performed poorly, due to creating only a partial block 
structure in the correlation matrix (Appendix I). When 
removing the singleton clusters, the model performed 
substantially better, but the negative h2-value indicated 
that the correlation matrix likely had negative eigenval-
ues, most probably due to ill-conditioning, and therefore 
the model was discarded. The proportion of non-single-
ton clusters was too low in the CMR models to function 
properly with the algorithm, despite the relatively lenient 
settings used in CoMeBack.

The TAD-based model performed the best by a small 
margin, supporting the hypothesis that using TADs as a 
structural prior contributes valuable data to methylation 
models. The null model, consisting of ten sets of random 
clusters with approximately the same number of clus-
ters and probes per cluster as the TAD model, however, 
showed nearly identical results as the TAD model. This 
suggests that it is the algorithm in itself, and its use of 

Table 1  Main results of the model comparisons
Model p-value Nagelkerke R2 AIC Probes clustered*
P + T (Tesfaye et al. 2024) 3.49 × 10− 8 0.0347 1597.7 12%
LDpred2, CMR blocks 0.432 0.000687 1628.8 18%
LDpred2, CMR blocks, no singletons 8.39 × 10− 7 0.0275 1604.3 18%
LDpred2, CMR sliding window blocks** [1.83 to 1.88] × 10− 8 0.0361 to 0.0362 1596.3 to 1596.5 74–86%
LDpred2, TAD blocks 1.68 × 10− 8 0.0363 1596.2 99%
LDpred2, random cluster blocks [2.02 to 2.79] × 10− 8 0.0352 to 0.0359 1596.6 to 1597.2 99%
* The percentage of probes included in non-singleton clusters. In the model LDpred2, CMR blocks, no singletons, this means that only 18% of the probes were used in 
the analysis, since singleton clusters were discarded

** For detailed results, see Appendix II

CMR: co-methylated region, TAD: topologically associating domain
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probe-probe correlation in the posterior effect sizes, that 
led to improved performance results, and not the TAD 
structures (5).

The sliding window model results were also nearly 
identical to the TAD results, suggesting that a perfect 
clustering of all probes is unnecessary. Even the 5  kb 
sliding window, which only clustered 74% of probes into 
non-singleton clusters, performed as well as the TAD 
clusters, and the much smaller cluster sizes in the sliding 
window versions did not seem to affect the model nega-
tively (Appendix II). This offers some support for using 
sliding window approaches based solely on genomic 
location in MS creation if, as in this case, correlations in 
methylation levels are processed in some other step in 
the analysis.

An important difference between PRS and MS creation 
is the imputation of probes between microarray typing 
and analysis in GWAS. Following genotyping of SNP 
arrays with a limited number of SNPs, LD references are 
used to impute SNPs in between probes, increasing the 

number of SNPs in the analysis from 400,000 to about 
11,000,000 [17]. When creating PRS, these SNPs are 
removed again by pruning to reduce redundancy. There 
is no similar imputation and pruning in MWAS. This dif-
ference suggests that pruning according to a structural 
reference, for example TADs or CMRs, might not be as 
crucial in MS creation as LD pruning is in PRS. The per-
formances of the sliding-window models and the earlier 
P + T model suggests that removing redundancy by con-
sidering probe-probe correlation is sufficient.

In conclusion, the LDpred2-based models performed 
marginally better than the existing, more validated P + T 
model, showing that it is feasible to use PRS methods for 
MS. Furthermore, the results from the LDpred2-based 
models support the findings from our previous study, 
that about 3.5% of the schizophrenia phenotypic vari-
ance can be explained by DNA methylation using MS [4]. 
The CMR priors functioned poorly in the analysis, and 
the TAD prior did not outperform the random cluster 
null model, suggesting that the key step in the process for 

Table 2  Distributions of probes per cluster in the TAD and sliding window clusters
Window size Probes clustered* Min Q1 Q2 Mean Q3 Max p-value Nagel-

kerke R2
AIC

5kb 74% 1 1 2 2.31 3 91 1.88 × 10− 8 0.0361 1596.5
10kb 78% 1 1 2 2.50 3 119 1.83 × 10− 8 0.0361 1596.4
20kb 81% 1 1 2 2.71 3 119 1.85 × 10− 8 0.0362 1596.3
100kb 85% 1 1 2 3.03 4 119 1.85 × 10− 8 0.0362 1596.3
500kb 86% 1 1 2 3.09 4 119 1.84 × 10− 8 0.0361 1596.3
1Mb 86% 1 1 2 3.09 4 119 1.86 ×10− 8 0.0361 1596.3
TAD clusters 99.99% 1 45 82 118.46 138 2690 1.68 × 10− 8 0.0363 1596.2
*The percentage of probes included in non-singleton clusters

TAD: topologically associating domain

The increase in probes clustered diminishes with larger window sizes and the percentage is constant above 500kb. The distributions change very little after 10kb. 
The differences in probe distributions between the sliding window and TAD clusters did not have any significant effect on the methylation scores’ performance

Fig. 1  Left: Schematic of a probe-probe block correlation matrix. Grey areas represent blocks around the diagonal, within which correlations are calculat-
ed. Most fields are empty (white). Right: When including singletons in the CMR blocks, only a partial block structure is created, which gives the algorithm 
too little correlation information to work with, since the singleton clusters do not contribute anything to the model
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MS creation is limiting the number of probes included by 
pruning, or in the case of LDpred2, regularization [5].

Both LDpred2 and CoMeBack, the latter also used in 
the pruning step for the P + T method [4], rely heavily on 
pairwise correlation. This merits a future investigation 
into other types of algorithms, such as random forests or 
neural networks, that do not depend on standard linear 
statistical methods.

Limitations

 	• The LDpred2 models were only tested on a single 
dataset.

 	• The models were only tested on a single phenotype.
 	• The blocks in the matrix were created using the 

test set, risking potential data leakage. Ideally, block 
matrices would have been created using a large, 
independent data set, just as has been done for LD in 
PRS [5].

 	• The LDpred2-auto function used for the models 
does not require a validation set to tune the 
hyperparameters, and is reported by Prive et al. 
[5] to perform nearly as well as the -grid version. 
Optimally, however, the tests would have been 
performed with an independent validation set and 
the -grid model.

 	• The sample sizes for training MWAS and test sample 
were 2,015 and 1,227, respectively, which might limit 
the power of the MS. Further tests might be needed 
on larger samples.

Appendix I

Appendix II
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