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Abstract 

Lassa fever is a serious health issue in West Africa that requires deeper understanding in order to be effectively con-
trolled. Compared to conventional integer-order methods, this study presents an improved analysis of disease dynam-
ics, including vaccine efficacy, by utilizing fractional-order models and the Laplace Adomian Decomposition methods. 
This research highlights the critical role of fractional-order dynamics and vaccination impact in understanding Lassa 
fever transmission and evaluating control strategies. It employs stability and sensitivity analyses, as well as the next-
generation matrix method, to assess the basic reproduction number. The study offers novel insights into the impor-
tance of expanded vaccination coverage, setting it apart from previous works. The study demonstrated that preven-
tive strategies, particularly double-dose vaccinations, are extremely efficient in controlling Lassa fever and lowering 
infection rates. It emphasizes the significance of increasing vaccination efforts to safeguard groups that are suscep-
tible. The findings offer important epidemiological insights, boosting efforts to eradicate the disease and improve 
public health in West Africa and beyond.
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Introduction
Lassa fever, a severe viral disease first identified in 1969 
in Lassa, Nigeria, is primarily transmitted by African rats. 
It is prevalent in West African nations, including Nige-
ria, Guinea, Sierra Leone, and Liberia, where it’s wide 
spread poses significant health concerns. The disease 
causes 100,000–300,000 cases and about 5000 deaths 
annually. Humans are typically infected through con-
tact with contaminated food or objects, such as rat urine 
and feces. Hospital data from Liberia and Sierra Leone 
indicate that 10–16% of admitted patients are affected 
[1–5] Lassa fever causes symptoms from mild headaches 

to severe nasal hemorrhage, with a 6–21  day incuba-
tion period. Transmitted by highly contagious rats, it is 
often fatal, posing a 95% mortality risk for third-trimester 
pregnancies [6]. Despite global recognition and concerns 
about its use as a biological weapon, effective mitigation 
remains absent after five decades. Early containment 
could have curbed its spread in West Africa. This essay 
examines the risks, challenges, and recommendations 
for managing Lassa fever. Ribavirin and protective cloth-
ing are essential for treating Lassa fever [7–9]. In order 
to manage its complicated dynamics and eradicate it in 
Nigeria, mathematical modeling, public awareness, and 
education are essential [10, 11]. Significant contributions 
have been made by researchers [12–15]; for example, [16] 
devised a nine-compartment model and [17] employed 
the Laplace transform for modeling.
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Fractional calculus, which employs arbitrary-order 
derivatives and integrals, enhances disease modeling by 
capturing memory effects and providing more accurate 
predictions. These models aid in predicting disease spread 
and susceptibility and are widely applied in various fields. 
Operators such as Atangana-Baleanu, Caputo-Fabrizio, 
Katugampola, and Caputo-Riemann–Liouville [11, 18–22] 
enable the analysis of long-range interactions, which is 
crucial for understanding and controlling infectious dis-
eases. While many studies highlight these applications 
[15, 21, 23, 24], there is a growing need to apply fractional-
order models to real-world scenarios and fractional deriva-
tives have been used for diseases like Lassa fever [25, 26]. 
The Caputo derivative, with its memory effects, has also 
enhanced models for COVID-19 immunization and quar-
antine studies [19].The Lassa fever outbreak has put a 
strain on healthcare and lowered life expectancy in Nige-
ria, a country of 200 million people with an annual growth 
rate of 2.6%. Between 2021 and February 2022, the fatal-
ity rate from Lassa fever decreased from 22.8 to 18.1% [6, 
27–30]. Offer a mathematical model to examine the best 
control measures to lessen the effects of COVID-19 and 
analyze its spread. To evaluate their efficacy in manag-
ing the pandemic, the study takes into account elements 
including social separation, treatment, and vaccines. Using 
data from Khyber Pakhtunkhwa, a TB model takes into 
account environmental factors, treatment, and immuniza-
tion. For ℛv < 1, a stability study demonstrates disease-free 
equilibrium; for ℛv > 1, stability is global. The basic repro-
duction number is ℛ0 = 3.6615, and control parameters 
are identified by sensitivity analysis [31]. This study inves-
tigates the UK’s monkeypox recurrence with  emphasis 
on vaccination. When a vaccine is administered, disease 
transmission is predicted by a mathematical model with 
R2 = 0.48 and R2 = 0.8. High vaccination effectiveness, 
low waning, and immunizing the infected are essential 
for effective control, according to sensitivity analysis and 
simulations [32], This work uses nonlinear least squares to 
fit real data and analyze the stability of equilibria in order 
to model HIV/AIDS dynamics. By calculating the funda-
mental reproduction number and using sensitivity analy-
sis to pinpoint important factors for disease reduction, it 
is demonstrated that HIV/AIDS cases can be decreased 
through prevention [33]. A global health concern, soil-
transmitted helminth infections are common in underde-
veloped areas. By modeling their transmission, this study 
finds that an endemic equilibrium (EEP) is stable when 
R0 > 1 and a disease-free equilibrium (DFE) is stable when 
R0 < 1. The usefulness of programs that emphasize educa-
tion and awareness in lowering disease is demonstrated by 
optimal control measures that focus on hygiene [34]. First 
and second doses of the vaccine are included in this study’s 
model of COVID-19 dynamics. Stability is determined by 

the control reproduction number; a state free of COVID 
is stable if it is less than one. Sensitivity analysis is used to 
identify important aspects such as vaccination rates and 
transmission using data from Malaysia (February 2021–
February 2022). Increased immunization and preventive 
measures successfully lower infection rates, according to 
simulations [35]. The dynamics of COVID-19 are modeled 
in this study by including the first and second doses of the 
vaccine. Stability is determined by the control reproduc-
tion number; if it is less than one, a state devoid of COVID 
is stable. Sensitivity analysis uses data from Malaysia 
(February 2021–February 2022) to identify important 
parameters such as vaccination rates and transmission. 
Infections are efficiently reduced by greater immunization 
and preventive measures, according to simulations [36]. 
The dynamics of tuberculosis are modeled in this paper, 
and stability is examined using Lyapunov functions and 
R0. Using data from Rwanda and Uganda, a Caputo frac-
tional model identifies important infection control fac-
tors. According to simulations, increased immunization 
and treatment lowers the prevalence and burden of tuber-
culosis [37]. This study uses drug-susceptible and drug-
resistant strains of tuberculosis to model the disease and 
finds a “backward bifurcation,” where both endemic and 
stable disease-free equilibria coexist when R0 < 1. Simula-
tions show that increasing treatment for drug-susceptible 
patients reduces their incidence but increases drug-resist-
ant TB. When R0 > 1, both strains coexist. The results 
highlight the challenges posed by drug resistance and the 
importance of mathematical models for tuberculosis con-
trol [38]. A mathematical model for analyzing the dynam-
ics of monkeypox is developed in this study, and stability is 
found when the reproduction number is less than one. It 
formulates an optimal control problem with four options 
(treatment, isolation, human-to-human prevention, and 
prevention of rodent-to-human transmission). The most 
economical and successful approach, according to simula-
tions, is to stop rodent-to-human transmission [39]. The 
Laplace Adomian Method and a Caputo fractional order 
are used in this study to model the transmission of Lassa 
fever and the effectiveness of double-dose vaccinations. 
The importance of double-dose vaccines in preventing 
Lassa fever and enhancing public health is emphasized. 
These findings can help policymakers assess vaccination 
programs to develop eradication strategies.

Preliminaries
Basics of fractional calculus.

Definition 1  Fractional integration of order υ gives 
(

∫ α

t0
h
)

(t) = 1
Ŵ(υ)

∫

(t − s)υ−1h(s)ds, υ ≥ 0, t ≥ t0.
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Definition 2  Rieman-Liouville derivative of order υ 
gives;

Definition 3  The  Caputo  fractional  gives 
c
0
Dυ
t h(t) =

1
Ŵ(n−υ)

t
∫

a

(t − u)n−υ−1h(u)du.

Definition 4  The Adomain polynomials, function h(t) 
into a series of polynomial by X0,X1,....Xn.

h(t) = h0 + h1 + h2 + .. as 

Xn = 1
n

dn

d�n

[

G(t)
n
∑

j=0

yj�
j

]

�=0

.

Methods
Description of model formulations
This study analyzes the dynamics of Lassa fever, interac-
tions between susceptible and infectious individuals, and 
immunization all result in a decrease in the transmission 
rate.

The vaccinated population over time. The first dose 
provides partial protection, while the rate of entry into 
the second-dose group depends on the vaccination rate, 
as shown by below.

The Vaccinated compartment with the second dose, 
boosting immunity. Flow depends on the vaccina-
tion rate and transition from the initial Vaccinated (V) 
compartment.

The Exposed (E) compartment includes those exposed 
to the virus but not yet contagious, governed by trans-
mission rate and contact with infected individuals.

The Infected Undetected (U) population includes 
symptomless individuals, possibly due to immunity or 
resistance.

Dα
t h(t) =

1

Ŵ(n− υ)

(

d

dx

)n
t

∫

a

(t − u)n−α−1h(u)du

(1)
dS(t)

dt
= π + εV1 − βSI − (ρ + µ)S

(2)
dV1(t)

dt
= ρS − (ε + κ + µ)V1

(3)
dV2(t)

dt
= κV1 − (ψ + µ)V2

(4)
dE(t)

dt
= βSI − (γ + µ)E

(5)
dU(t)

dt
= (1− ϕ)γE − (�+ µ)U

The Infected population (I) consists of individuals with 
Lassa fever. It fluctuates over time due to transmission, 
mortality, and other factors. The population size is influ-
enced by infection rates and mortality.

The Recovered (R) compartment includes those who 
recovered, died, or were removed for other reasons. Flow 
depends on recovery, mortality, and elimination rates..

The SV1V2EUIR model simulates Lassa fever dynam-
ics, assessing the impact of vaccination on disease spread. 
It is based on a system of differential equations derived 
from formulations (1) through (7).

Model Assumptions:
The model assumptions for a double-dose Lassa vacci-

nation strategy:
To activate the immune system, the initial dosage of the 

vaccine (V1) provides short-term immunity, but it might 
not offer complete protection, potentially increasing vul-
nerability. The immune response is strengthened by the 
second dose (V2), which provides longer-lasting immunity 
and indicates healing and well-being. While some vacci-
nations may require recurring booster shots to maintain 
protection, after V2, the immune system develops a strong 
memory response, reducing the likelihood of contracting 
the illness again. Strong immune memory is developed fol-
lowing the second dose (V2), resulting in sustained immu-
nity and decreased susceptibility, even after a significant 
decrease in V2’s effect. These assumptions pertain to the 
role of boosters in vaccination regimens and the activa-
tion of biological principles. However, factors such as the 
illness, the vaccine, and personal variables can all influence 
the duration of immunity and susceptibility.

(6)
dI(t)

dt
= γ2γE − (ω + µ+ σ)I

(7)
dR(t)

dt
= σ I + ψV2 − µR+ �U

(8)

dS(t)

dt
= π + εV1 − βSI − (ρ + µ)S

dV1(t)

dt
= ρS − (ε + κ + µ)V1

dV2(t)

dt
= κV1 − (ψ + µ)V2

dE(t)

dt
= βSI − (γ1 + µ)E

dU(t)

dt
= (1− ϕ)γE − (�+ µ)U

dI(t)

dt
= ϕγE − (ω + µ+ σ)I

dR(t)

dt
= σ I + ψV2 − µR+ �U
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Table1 above variables, parameter and definition of each 
compartment in model Eq. (8).

(Theorem 1) Existence and Uniqueness of solution
Let:

u1 =
dS(t)

dt
= π + εV1 − βSI − (ρ + µ)S,

u2 =
dV1(t)

dt
= ρS − (ε + κ + µ)V ,

The model’s solution is distinct, using a partial derivative 
to produce the following;

(9)u3 =
dV2(t)

dt
= κV1 − (ψ + µ)V2,

u4 =
dE(t)

dt
= βSI − (γ + µ)E,

u5 =
dU(t)

dt
= (1− ϕ)γE − (�+ µ)U ,

u6 =
dI(t)

dt
= ϕγE − (ω + µ+ σ)I

u7 =
dR(t)

dt
= σ I + ψV2 − µR+ �U

ℜ =

{

(S(t),V1(t),V2(t),E(t),U(t), I(t),R(t)) : |S − S0| ≤ a, |V 1− V 10| ≤ b, ||V 2− V 20|| ≤ c,

|E − E0| ≤ d, |U − U0| ≤ e, |I − I0| ≤ f , |R− R0| ≤ g

}

∣
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Theorem 1 highlights the partial derivative’s biological 
viability and epidemiological significance by establishing 
boundaries and continuity for it in order to guarantee 
that the model is well-posed with a unique solution.

Basic reproduction number
Basic Reproduction Number (R₀) which represents the 
average number of new cases brought on by one sick per-
son, indicates how contagious a disease is. The sickness 
spreads if R₀ > 1 and diminishes if R₀ < 1. R₀ directs con-
trol methods like vaccination to lower transmission and 
aids in setting the herd immunity threshold.

(10)R0 =
(ε + κ + µ)πβγϕ

(εµ+ κµ+ κρ + µ2 + µρ)(ωµ+ σϕ + µϕ + µ2 + µσ + ωϕ)

Analysis of Basic reproduction number
If R₀ < 1, the disease is likely to fade out, while if R₀ > 1, it 
can lead to an epidemic and how vaccination control, the 
impact on R₀ will be analyzed using estimated parameters 
from vaccination.R0 =

0.00001094017094(ε+κ+0.125)
κρ+0.125κ+0.125ρ+0.125ε+0.015625

.
Evaluates the effects of waning immunity, initial vacci-

nation, and booster doses on reproduction number. The 
initial analysis focuses on waning and first vaccination 
variations, as shown in Table 2, while Table 3 presents a 
comprehensive assessment of their combined effects.

Lassa vaccine effectiveness without full coverage is 
demonstrated by Table 2A, which shows that waning vac-
cination lowers R₀ below 1. Table 2B shows that first-dose 
vaccination effectively reduces R₀, promoting disease-
free stability. Table  2C shows that combining first-dose 
and waning strategies accelerates R₀ reduction. Table  3 
highlights the combined effect, lowering R₀ from 2 to 
below 1, suggesting the disease may die out.

Sensitivity analysis of ℜ0

This analysis is performed using Sℜ0
y =

∂ℜ0

∂y ·
y
ℜ0

.
Table  4 presents the sensitivity analysis of parameters 

influencing disease spread. Recruitment rate and trans-
mission coefficient are positively affect R0, while recovery 
rate reduces it. Vaccination rates (first and second doses) 

Table 1  Variables and parameters description

S(t) Susceptible at t

V1(t) Dose1at t

V2(t) Dose2 at t

E(t) Exposed at t

U(t) Infected Undetected at t

I(t) Infected at t

R(t) Recovered at t

π Birth rate

µ Nature death rate

β Transmission rate

ρ first vaccine rate

κ second vaccination rate

ε Waning first Vaccine rate

ψ Immured offer second dose fully recovered rate

γ Incubation rate exposed individual progress to infected individual

ϕ Rate of infection progression from undiscovered to infected 
person

σ Recovery rate of infected individual

ω Death induced due to disease

� Rate of recovery for an infected but unidentified person

Table 2  Solo and combined impact of first vaccination and waning first vaccination on Ro

A B C

S/N ρ ε κ R0 ρ ε κ R0 ρ ε κ R0

1 0 0 0 0.00009 0.9 0 0 0.00001 0.9 0.02 0 0.00005

2 0.25 0 0 0.00003 0.9 0.25 0 0.00003 0.9 0.02 0.25 0.00001

3 0.45 0 0 0.00002 0.9 0.45 0 0.00003 0.9 0.02 0.45 0.00001

4 0.65 0 0 0.00001 0.9 0.65 0 0.00004 0.9 0.02 0.65 0.00001

5 0.85 0 0 0.00001 0.9 0.85 0 0.00004 0.9 0.02 0.85 0.00001

6 1.0 0 0 0.000001 0.9 1.0 0 0.00005 0.9 0.02 1,0 0.00002

Table 3  Impact of booster dose vaccine on R0

S/N ρ ε κ R0

1 0 0 0 0.00008

2 0.25 0.25 0.25 0.00004

3 0.45 0.45 0.45 0.00003

4 0.65 0.65 0.65 0.00002

5 0.85 0.85 0.85 0.000019

6 1.0 1.0 1.0 0.000013
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negatively impact R0, highlighting the role of increased 
vaccination efforts. However, waning immunity from 
the first dose raises R0, emphasizing the need for booster 
doses and awareness programs.

Booster uptake further reduces R0, underlining its 
importance. Factors like contact rate and the progres-
sion of exposed individuals to undetected infection also 
increase R0, stressing the need for mitigation efforts. 
Enhancing vaccination, reducing contact rates, and 
implementing screening and treatment are crucial for 
controlling Lassa disease. Figures 1 and 2 show the sensi-
tivity indices on R0 respectively.

Stability analysis
Disease dynamics are evaluated using stability analysis of 
the Disease-Free Equilibrium (DFE) and Endemic Equilib-
rium (EEP) in Lassa fever models. The DFE is stable if the 
basic reproduction number R0 < 1 , indicating the pos-
sibility of eliminating the disease with appropriate health 
interventions. The EEP is stable when R0 > 1 , suggesting 
that the disease will persist and need to be targeted with 
vaccination to prevent and control Lassa fever outbreaks.

Disease free equilibrium
E = I = Q = 0 . Equating Eq. (8) to zero yields:

(11)E0 = (S∗,V 1
∗
,V 2

∗
,E

∗
,U

∗
, I

∗
,R

∗) =









π(ε + κ + µ)

εµ+ µ2 + κρ + µρ
,

πρ

εµ+ µ2 + κρ + µρ
,

πκρ

εµψ + εµ2 + κµ2 + µκψ + κµρ + κψρ + µ3 + µ2ψ + µ2ρ + µψρ
, 0, 0, 00









Table 4  Sensitivity index of each parameter on ℜ0

Parameters Sensitivity indices

ρ − 0.8559298048

β 1

ε 0.3417607759

γ 0.3846153844

µ − 1.232714941

π 1

κ − 0.001187790446

ω − 0.08888888892

σ 0.6444444433

Endemic equilibrium
E1 = (S∗∗,V 1∗∗,V 2∗∗,E∗∗,U∗∗, I∗∗,R∗∗) is obtained as 
follows.

(12)S∗∗ =
µγ + γω + γ σ + µ2 + µω + µσ

γϕβ

(13)V 1
∗∗ =

ρ(γµ+ γω + γ σ + µ2 + µω + µσ)

(ε + κ + µ)γβϕ

(14)

V 2
∗∗ =

ρκ
(

γµ+ γω + γ σ + µ2 + µω + µσ
)

(

εµ+ εψ + γ σ + κµ+ κψ + µ2 + µψ
)

γβϕ

(15)
E
∗∗ =

1

(εγ + εµ+ γ σ + κγ + γµ+ µ2 + µκ)γ ϕ
(−µ2ρσ − µ2ρω − µ2εσ − µ2εω − µ2ργ − µ2γ ε − µ2γω

− µ2γ σ − µ2κγ − µ2κω − µ2κσ − µ3κ − µ3ω − µ3σ − µ3γ − µ2ρκ − µγωκ − µγσκ − µγρκ − γωρκ

− γ σρκ − γωρµ− γµρσ − γωεµ− γ εσµ− µωρκ − µσρκ + πϕεβγ + πϕκβγ + πϕµβγ − µ4 − µ3ρ − µ3ε)

(16)

U∗∗ =
1

ϕ(�+ µ)
(

εγ + εµ+ γ σ + κγ + γµ+ µ2 + µκ
)

β
((ϕ − 1)(−µ2ρσ − µ2ρω − µ2εσ − µ2εω

− µ2ργ − µ2γ ε − µ2γω − µ2γ σ − µ2κγ − µ2κω − µ2κσ − µ3κ − µ3ω − µ3σ − µ3γ − µ2ρκ

− µγωκ − µγσκ − µγρκ − γωρκ − γ σρκ − γωρµ− γµρσ − γωεµ− γ εσµ− µωρκ − µσρκ

+ πϕεβγ + πϕκβγ + πϕµβγ − µ4 − µ3ρ − µ3ε))
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The new fractional Caputo derivative Model designed

With initial condition S0 = n1, V10 = n2,,V20 = n3,

E0 = n4,U0 = n5, I0 = n6,R0 = n7.
cDα0 ≤ α ≤ 1 Caputo’s derivative of fractional order 

and α fractional time derivative.

The Laplace Adomian decomposition method
Applying Laplace transform to both side of model (18)

(17)

I∗∗ =







−µ2ρσ − µ2ρω − µ2εσ − µ2εω − µ2ργ − µ2γ ε − µ2γω − µ2γ σ − µ2κγ − µ2κω − µ2κσ

−µ3κ − µ3ω − µ3σ − µ3γ − µ2ρκ − µγωκ − µγσκ − µγρκ − γωρκ − γ σρκ − γωρµ− γµρσ

−γωεµ− γ εσµ− µωρκ − µσρκ + πϕεβγ + πϕκβγ + πϕµβγ − µ4 − µ3ρ − µ3ε







�

β
�

εγµ+ εµω + εγ σ + ωκγ + γµω + γµ2 + γµκ + γµσ + κµ2 + ωµκ + σµκ + µ3 + µ2ω + µ2σ
��

(18)

cDα1S(t) = π + εV1 − βSI − (ρ + µ)S
cDα1V1(t) = ρS − (ε + κ + µ)V1

cDα1V2(t) = κV1 − (ψ + µ)V2

cDα1E(t) = βSI − (γ + µ)E
cDα1U(t) = (1− ϕ)γE − (�+ µ)U
cDα1 I(t) = ϕγE − (ω + µ+ σ)I
cDα1R(t) = σ I + ψV2 − µR+ �U















































(19)

L
�

cDα1S(t)
�

= L{π + εV1 − βSI − (ρ + µ)S}

L
�

cDα2V1(t)
�

= L{ρS − (ε + κ + µ)V1}

L
�

cDα3V2(t)
�

= L{κV1 − (ψ + µ)V2}

L
�

cDα4E(t)
�

= L{βSI − (γ + µ)E}

L
�

cDα5U(t)
�

= L{(1− ϕ)γE − (�+ µ)U}

L
�

cDα6 I(t)
�

= L{ϕγE − (ω + µ+ σ)I}

L
�

cDα7R(t)
�

= L{σ I + ψV2 − µR+ �U}























































Solving (19)

S(t),V1(t),V2(t),E(t),U(t), I(t),R(t) infinite series

Using initial condition

(20)

S(t) = S−1S(0)+
1

Sα1
L{π + εV1 − βSI − (ρ + µ)S}

V1(t) = S−1V1(0)+
1

Sα2
L{ρS − (ε + κ + µ)V1}

V2(t) = S−1V2(0)+
1

Sα3
L{κV1 − (ψ + µ)V2}

E(t) = S−1E(0)+
1

Sα4
L{βSI − (γ + µ)E}

U(t) = S−1U(0)+
1

Sα5
L{(1− ϕ)γE − (�+ µ)U}

I(t) = S−1I(0)+
1

Sα6
L{ϕγE − (ω + µ+ σ)I}

R(t) = S−1R(0)+
1

Sα7
L{σ I + ψV2 − µR+ �U}































































































(21)

S(t) =

∝
∑

n=0

Sn,V1(t) =

∝
∑

n=0

V1n ,

V2(t) =

∝
∑

n=0

V2n ,.E(t) =

∝
∑

n=0

En,U(t) =

∝
∑

n=0

Un,

I(t) =

∝
∑

n=0

In,R(t) =

∝
∑

n=0

Rn,

(22)

S(t) = S−1S(0)+
1

Sα1
L{π + εV1 − βSI − (ρ + µ)S}

V1(t) = S−1V1(0)+
1

Sα2
L{ρS − (ε + κ + µ)V1}

V2(t) = S−1V2(0)+
1

Sα3
L{κV1 − (ψ + µ)V2}

E(t) = S−1E(0)+
1

Sα4
L{βSI − (γ + µ)E}

U(t) = S−1U(0)+
1

Sα5
L{(1− ϕ)γE − (�+ µ)U}

I(t) = S−1I(0)+
1

Sα6
L{ϕγE − (ω + µ+ σ)I}

R(t) = S−1R(0)+
1

Sα7
L{σ I + ψV2 − µR+ �U}































































































Fig. 1  Sensitivity chart of parameter on ℜ0
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Fig. 2  Simulated parameters on ℜ0



Page 9 of 29Yunus and Olayiwola ﻿BMC Research Notes          (2025) 18:199 	

Fig. 2  continued
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Fig. 2  continued
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Laplace inverse gives General formula for the model

Iterations
(23)

∞
�

n=0

Sn+1(t) = L−1

�

1

Sα1
L{π + εV1 − βSI − (ρ + µ)S}

�

∞
�

n=0

V1n+1(t) = L−1

�

1

Sα2
L{ρS − (ε + κ + µ)V1}

�

∞
�

n=0

V2n+1(t) = L−1

�

1

Sα3
L{κV1 − (ψ + µ)V2}

�

∞
�

n=0

En+1(t) = L−1

�

1

Sα4
L{βSI − (γ + µ)E}

�

∞
�

n=0

Un+1(t) = L−1

�

1

Sα5
L{(1− ϕ)γE − (�+ µ)U}

�

∞
�

n=0

In+1(t) = L−1

�

1

Sα6
L{ϕγE − (ω + µ+ σ)I}

�

∞
�

n=0

Rn+1(t) = L−1

�

1

Sα7
L{σ I + ψV2 − µR+ �U}

�











































































































































S1 = (π + εn2 − βn1n6 − (ρ + µ)n1)
tα1

Ŵ(α1 + 1)

V11 = (ρn1 − (ε + κ + µ)n2)
tα2

Ŵ(α2 + 1)

V21 = (κn2 − (ψ + µ)n3)
tα3

Ŵ(α3 + 1)

E1 = (βn1n6 − (γ + µ)n4)
tα4

Ŵ(α4 + 1)

U1 = ((1− ϕ)γn4 − (�+ µ)n5)
tα5

Ŵ(α5 + 1)

I1 = (ϕγn4 − (ω + µ+ σ)n6)
tα

Ŵ(α6 + 1)

R1 = (σn6 + ψn3 − µn7 + �n5)
tα7

Ŵ(α7 + 1)

S2 =π + ε(ρn1 − (ε + κ + µ)n2)
tα1+α2

Ŵ(α1 + α2 + 1)
− β(n1(ϕγn4 − (ω + µ+ σ)n6)

tα1+α6

Ŵ(α1 + α6 + 1)

+ n6(π + εn2 − βn1n6 − (ρ + µ)n1)
t2α1

Ŵ(2α1 + 1)
− (ρ + µ)(π + εn2 − βn1n6 − (ρ + µ)n1)

t2α1

Ŵ(2α1 + 1)

V12 = ρ(π + εn2 − βn1n6 − (ρ + µ)n1)
tα1+α2

Ŵ(α1 + α2 + 1)
− (ε1 + k + µ)(ρn1 − ε1n2 − Kn2 − µn2)

t2α2

Ŵ(2α2 + 1)

V22 = κ(ρn1 − (ε + κ + µ)n2)
tα2+α3

Ŵ(α2 + α3 + 1)
− (ψ + µ)(κn1 − ψn3 − µn3)

t2α3

Ŵ(2α3 + 1)

E2 =β

(

n1(ϕγn4 − (ω + µ+ σ)n6)
tα1+α6

Ŵ(α6 + α4 + 1)
+ n6(π + εn2 − βn1n6 − (ρ + µ)n1)

tα1+α4

Ŵ(α1 + α4 + 1)

)

− (γ + µ)(βn1n6 − (γ + µ)n4)
t2α4

Ŵ(2α4 + 1)

U2 = (1− ϕ)γ (βn1n6 − (γ + µ)n4)
tα5+α4

Ŵ(α5 + α4 + 1)
− (�+ µ)((1− ϕ)γn4 − (�+ µ)n5)

t2α5

Ŵ2(α5 + 1)

I2 = ϕγ (βn1n6 − (γ + µ)n4)
tα4+α6

Ŵ(α4 + α6 + 1)
− (ω + µ+ σ)(ϕγn4 − (ω + µ+ σ)n6)

tα6

Ŵ(2α6 + 1)
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Numerical results
Utilized initial values (S(0), V1(0), V2(0), E(0), U(0), I(0), 
R(0)) = (200, 150, 110, 100, 90, 150, 180) and parameters 
values

We obtain the following series solution:

Discussions
The model’s efficacy was validated by simulations, which 
showed that raising alpha improves immunization and 
recovery rates while slowing the spread of disease. The 
dynamics of vaccination, infection, and recovery are pre-
sented in Figs.  2, 3, 4, 5, 6, 7, offering a comprehensive 

R2 =σ(ϕγn4 − (ω + µ+ σ)n6)
tα5+α9

Ŵ(α6 + α7 + 1)
+ ψ(κn2 − (ψ + µ)n3)

tα7+α9

Ŵ(α7 + α3 + 1)

− µ(σn6 + ψn3 − µn7 + �n5)
t2α7

Ŵ(2α7 + 1)
+ ψ(κn2 − (ψ + µ)n3)

tα7+α5

Ŵ(α7 + α5 + 1)

β = 0.05 ϕ = 0, 5, γ = 0.2, κ = 0.001, µ = 0.125, ψ = 0.1 ω = 0.02, σ = 0.08,

� = 0.3, π = 0.001, ρ = 0.9,ε = 0.0267

S(t) = 200.001−
1700.9940tα

Ŵ(α + 1)
+

14742.66829t2α

Ŵ(2α + 1)
,

V1(t) = 150+
157.0950tα

Ŵ(α + 1)
−

1554.883006t2α

Ŵ(2α + 1)
,

V2(t) = 110−
24.600tα

Ŵ(α + 1)
+

5.6920950t2α

Ŵ(2α + 1)

E(t) = 100+
1467.500tα

Ŵ(α + 1)
+

13471.89250t2α

Ŵ(2α + 1)

U(t) = 90−
28.250tα

Ŵ(α + 1)
+

158.756250t2α

Ŵ(2α + 1)

I(t) = 150−
23.750tα

Ŵ(α + 1)
+

152.093750t2α

Ŵ(2α + 1)

R(t) = 180+
27.500tα

Ŵ(α + 1)
−

16.272500t2α

Ŵ(2α + 1)

transmission to manage Lassa fever. Higher transmission 
rates are shown to result in significantly elevated peak 
exposures, which highlights the need for stringent meas-
ures to limit disease spread (Figs. 20, 21).

Moreover, population dynamics are profoundly influ-
enced by adjustments to first- and second-dose vac-
cination rates. Notably, achieving higher second-dose 
coverage is pivotal in preventing the disease from becom-
ing endemic and in enhancing recovery rates across the 
population. Vaccination continues to be one of the most 
effective and essential strategies for mitigating Lassa 
fever, underscoring its role in disease prevention and 
control.

Conclusion
The study employs a novel mathematical modeling 
approach using fractional Caputo derivatives to inves-
tigate the transmission of Lassa fever, the uniqueness of 
the model solution, and the reproduction number (R₀). 
Numerical simulations reveal the impacts of both initial 
and subsequent vaccine doses, highlighting the critical 
role of higher vaccination rates in reducing infections and 
halting disease spread. The findings strongly advocate for 
mass vaccination campaigns to generate herd immunity, 
prevent outbreaks, and improve the precision of outbreak 
prediction models. In order to develop strong immunity 
in communities, the study emphasizes the significance 
of a comprehensive vaccination approach, especially the 
use of two-dose regimens. This study identifies a critical 
route to halting the development of Lassa fever and less-
ening its effects on public health by filling in vaccine gaps 
and encouraging mass immunization campaigns.

view of how these factors evolve over time. Figures  8, 
9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, on the other 
hand, underscore the critical importance of controlling 
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Fig. 3  fractional order effect on susceptible

Fig. 4  fractional order effect on first vaccination
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Fig. 5  fractional order effect on second vaccination

Fig. 6  fractional order effect on Exposed
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Fig. 7  fractional order effect on infected undetected

Fig. 8  fractional order effect on infected
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Fig. 9  fractional order effect on Recovered
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Fig. 10  Effect of β on Classical and fractional
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Fig. 11  Effect of ε on Classical and fractional



Page 19 of 29Yunus and Olayiwola ﻿BMC Research Notes          (2025) 18:199 	

Fig. 12  Effect of ρ on Classical and fractional
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Fig. 13  Effect of ε on V1 Classical and fractional



Page 21 of 29Yunus and Olayiwola ﻿BMC Research Notes          (2025) 18:199 	

Fig. 14  Effect of ρ on V1Classical and fractional
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Fig. 15  Effect of κ on V1Classical and fractional
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Fig. 16  Effect of κ on V2 Classical and fractional
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Fig. 17  Effect of ψ on V2 Classical and fractional
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Fig. 18  Effect of β on E Classical and fractional
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Fig. 19  Effect of γ on E(t) Classical and fractional
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Fig. 20  Effect of ϕ on I(t).Classical and fractional



Page 28 of 29Yunus and Olayiwola ﻿BMC Research Notes          (2025) 18:199 
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