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Abstract 

Objective  COVID-19 data exhibit various biases, not least a significant weekly periodic oscillation observed in case 
and death data from multiple countries. There has been debate over whether this may be attributed to weekly 
socialising and working patterns, or is due to underlying biases in the reporting process. We investigate these periodic 
reporting trends in epidemics of COVID-19 and cholera, and discuss the possible origin of these oscillations.

Results  We present a systematic, global characterisation of these weekly biases and identify an equivalent bias 
in the current Haitian cholera outbreak. By comparing published COVID-19 time series to retrospective datasets 
from the United Kingdom (UK), we demonstrate that the weekly trends observed in the UK may be fully explained 
by biases in the testing and reporting processes. These conclusions play an important role in forecasting healthcare 
demand and determining suitable interventions for future infectious disease outbreaks.
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Introduction
Many time-varying epidemiological data are affected by 
cyclical trends on weekly or annual time scales. Weekly 
cycles in disease incidence or death rates can arise from a 
variety of factors, which may range from genuine under-
lying trends in the epidemiological events themselves, to 
mere artefacts of the observation processes involved in 
collecting and reporting data. For example, certain car-
diac illnesses are more common on Mondays, possibly 

driven by factors such as alcohol consumption or employ-
ment-related stress [1–3]; while the impact of health-
seeking behaviour (where individuals are more likely to 
access disease testing and other healthcare services on 
particular days of the week) is well reported across dis-
eases from HIV [4] to influenza [5, 6]. Weekly trends in 
reported data may also be due to the data processing and 
reporting processes themselves, making the reported 
case numbers a biased estimate of true incidence. For 
example, reported mpox cases in England were lower 
on Fridays and Saturdays, which has been attributed to 
reduced test processing over the weekend [7].

A significant weekly periodic oscillation has been iden-
tified in US COVID-19 time series datasets for both case 
and death data [8], which has since been substantiated by 
observations of Huang et  al. [9] on aggregated interna-
tional data. Bergman et al. [8] attribute periodic oscilla-
tion in COVID-19 data from New York and Los Angeles 
to weekly fluctuations in case and death reporting (such 
as consistent under-reporting at weekends compensated 
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by over-reporting during the week), a hypothesis sup-
ported by the analysis from Hotz et al. of case incidence 
data in Germany [10]. This association is disputed, how-
ever, and it has been suggested that these fluctuations 
reflect an underlying periodicity in the true case/death 
data, either due to weekly variation in inter-generational 
interactions [11], working patterns [12], or even an 
underlying circadian rhythm of the virus [13]. Oscilla-
tions in the death data are then assumed to lag oscilla-
tions in the case data by a fixed period [11], though other 
authors have suggested these may be a product of the 
‘weekend effect’ [14], or increased stress in the clinical 
system [15].

To distinguish biases in the reporting process from 
these other effects, we may differentiate between the 
timing of primary and secondary events (note that this 
formalisation is distinct from the primary and second-
ary infection events common in analysis of the genera-
tion time). When considering the reporting of infections, 
the primary event is the infection event itself (when one 
individual transmits the disease to another), while the 
secondary event corresponds to the individual report-
ing a positive test for the disease. As we typically only 
have data for the occurrence of secondary events, any 
periodic variation in the secondary events may originate 
from periodic variation in the primary event (in this case 
weekly patterns in social contacts that drive infections) 
or biases from the secondary event (such as healthcare-
seeking behaviour or reporting biases).

We may make a similar distinction in the data on 
deaths recorded, where there is some delay between the 
primary event (the death occurring) and the secondary 
event (the recording of the death on an epidemiological 
database). While death data grouped by occurrence date 
(the primary event) ultimately provide the most accurate 
representation of the pandemic, these are only avail-
able in a handful of countries/regions. Furthermore, to 
avoid the right truncation of deaths that have occurred 
but have not yet been recorded, these data are typically 
only available after a significant time lag to ensure that all 
historic events are included. Decision-making agencies 
therefore rely on deaths grouped by reporting date (the 
secondary event) [16], which may represent the best pos-
sible understanding of the pandemic at a given point in 
time, but are hampered by delays in reporting [17].

In this paper, we characterise these periodic reporting 
trends, considering both case and death data for COVID-
19 globally, and discuss the possible origin of these 
trends. We further identify similar periodic trends in an 
ongoing outbreak of cholera in Haiti.

While these datasets group both cases and deaths 
by the date reported (hereafter referred to as ‘report-
ing date’), we further analyse a dataset from the United 

Kingdom (UK) that contains both between deaths 
grouped by the reporting date (i.e. the secondary event) 
and deaths grouped by the actual date of death, as 
recorded on the death certificate (i.e. the primary event). 
While these primary event data are not immune from 
reporting delays, only being updated days or even weeks 
after the date in question, they likely eliminate system-
atic, periodic biases in reporting. In post-hoc analysis, 
the primary event data therefore offer a unique oppor-
tunity to determine whether reporting process or genu-
ine trends in disease events are responsible for periodic 
oscillations observed in datasets grouped by publica-
tion date. Identifying the origin of periodic variation in 
reported epidemic data is crucial for modern methods 
to infer epidemiological parameters [18], and underpins 
forecasting for modern healthcare demands such as the 
numbers of intensive care beds [19].

Main text
Methods and data
The COVID-19 data used in this report were extracted 
from the Johns Hopkins Database [20], up to 1st March 
2023. Case rates are based on the total number of posi-
tive tests (accounting for individuals taking multiple 
tests), while death rates are defined as the number of 
deaths with a positive COVID-19 test in the past 28 days. 
The raw data give daily cumulative totals for both cases 
and deaths, which we used to generate daily case inci-
dences and daily deaths. Any negative counts (resulting 
from a decrease in the cumulative total) were attributed 
to changes in the reporting mechanism and excluded 
from further analysis.

Case incidence time series of the cholera outbreak in 
Haiti was obtained from the PAHO/WHO Cholera dash-
board up to 4th April 2023, available at: https://​shiny.​
paho-​phe.​org/​chole​ra/. This combines case reports from 
all 10 departments of Haiti reported by the Haiti Minis-
try of Public Health and Population. UK data used in the 
“Role of data reporting in weekly oscillation” section 
was extracted from the United Kingdom Health Secu-
rity Agency public dashboard, using the Public Health 
England API service. These data are available at: https://​
ukhsa-​dashb​oard.​data.​gov.​uk/. This dataset provides 
two distinct records of COVID-19 deaths—the first is 
equivalent to the dataset provided by the Johns Hop-
kins database, and was available in real-time during the 
pandemic. This record groups death events by the date 
on which they were processed and added to the national 
database, hereafter referred to as the ‘reporting date’. The 
second record groups deaths by the true date of death, as 
recorded on the death certificate, which we will refer to 
as the ‘event date’.

https://shiny.paho-phe.org/cholera/
https://shiny.paho-phe.org/cholera/
https://ukhsa-dashboard.data.gov.uk/
https://ukhsa-dashboard.data.gov.uk/
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To characterise the periodic biases observed in all 
datasets, we define a reporting factor αi for each day 
i, given by the ratio between the observed value on a 
given day and the average value from a seven-day win-
dow centred on the given day. To determine the sta-
tistical significance, across a whole time series, of the 
differences between the distribution of reporting fac-
tors for each day of the week, we employ the Kruskal-
Wallis H test [21]. This is a non-parametric statistical 
test that compares the median ranks of multiple inde-
pendent groups to determine if samples come from the 
same distribution—in this case we compare the report-
ing factors grouped by day of the week. Under the null 
hypothesis of no variation, the test statistic has a χ2 
distribution.

We further compute the average reporting factor for 
each day of the week across the 200 countries included 
in the Johns Hopkins database. We reduce the dimen-
sionality of this data through a Principal Component 
Analysis (PCA); this combines trends in multiple input 
variables (i.e. daily reporting factors) to summarize 
global patterns (such as weekend under-reporting) in 
the weekly reporting trends of COVID-19. We treat 
each country’s data as a row of the table, with 7 data 
columns representing the reporting factors for each 
day of the week. No further standardisation is required 
for this dataset, as all the input variables already vary 
over the range 0–7. We record the first two principle 
components: these are eigenvectors of the covariance 
matrix with the largest associated eigenvalues. As 
such, the sign of the PCA components is arbitrary, and 
so we match these to the sign of the reporting trend 
(i.e. positive coefficients correspond to over-reporting 
on the days in question). This is done by computing 
the inner product of each principal component with 
the weekly reporting trend vector for each country, 
identifying the 20 countries with the largest magni-
tude inner product (that exemplify the most extreme 
trends described by each principal component), and 
switching the sign of the principal component vector 
if necessary so that the majority of the largest inner 
products are positive. For both inner products, over 
80% of the 20 countries with the largest magnitude 
inner products had the same sign, demonstrating the 
consistency in reporting trends across the dataset.

To collate these data sources and analysis, we have 
developed a user-friendly, open-source Python library 
for exploring and visualizing periodic trends in 
COVID-19 data. This includes notebooks for repro-
ducing all results appearing in this paper, and is 
available at: https://​github.​com/​KCGal​lagher/​perio​
dic-​sampl​ing.

Results
Weekly reporting trends for COVID‑19
Weekly reporting trends are consistently observed 
across countries worldwide, exemplified by the UK and 
US in Fig. 1a. Weekly periodicities can also be observed 
in the power spectral densities of these time series for 
both countries, plotted in Supplemental Figure S1. To 
demonstrate the systematic trends observed globally, 
Fig.  1b shows the distribution of the reporting factor 
for COVID-19 death data. Significant under-reporting 
over the weekend observed for most countries can be 
clearly discerned—note that for Israel the standard 
weekend is Friday & Saturday and under-reporting is 
observed on these days instead.

Table 1 gives the two primary principal components 
from the PCA; it is clear that the largest principal com-
ponent (accounting for over a third of the variation 
across the dataset) corresponds to under-reporting on 
Saturday & Sunday (usually the weekend, though this 
differs across countries). More interestingly, the second 
principal component corresponds to the over-reporting 
specifically on Mondays; this principal component dis-
tinguishes between countries such as Sudan that com-
pensate for the bulk of weekend under-reporting on 
Mondays alone, and countries such as Japan that com-
pensate for weekend under-reporting by over-report-
ing across the working week. Both of these trends are 
shown in Fig.  1b, though the PCA is able to formally 
substantiate these visual trends. 

This analysis confirms a systematic, global presence 
of weekly periodic biases, that have previously been 
observed in individual countries or small-scale com-
parisons [8, 9, 11].

Weekly reporting trends for cholera
Applying these periodic analysis methods instead to 
daily case data from Haiti, we also observed consist-
ent weekly trends characterised by a significant under-
reporting on Sundays. Computing the Kruskal-Wallis 
H statistic on the reporting factor distribution between 
days of the week, we found significant variation in the 
reporting factor distribution between days of the week 
( H = 28, DF = 5, p < 0.01).

Role of data reporting in weekly oscillation
To inform whether the weekly oscillation observed 
in the  “Weekly reporting trends for COVID-19” sec-
tion may be attributed to solely to the reporting pro-
cess (i.e. the secondary event data), or whether there 
is an underlying periodicity in the primary event data, 
we consider time series data for deaths resulting from 
COVID-19 in the UK. The UK death data, grouped by 

https://github.com/KCGallagher/periodic-sampling
https://github.com/KCGallagher/periodic-sampling
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both the event date and reporting date, are presented 
in Fig. 2a.

Conducting a standard power spectrum analysis 
(Fig.  2b), we see a clear weekly oscillation in the time 
series grouped by reporting date, which appears to be 
eliminated in the time series grouped by event date. 
More formally, considering the Kruskal–Wallis H sta-
tistic for the distribution of reporting factors between 
days of the week in both UK death datasets, we found no 
evidence for weekly periodicity in the grouping by event 
date ( H = 6, DF = 5, p = 0.42 ), while there was strong 
variation in the median reporting factor for the group-
ing by reporting date ( H = 356, DF = 5, p < 0.01 ). The 
differing distribution of daily reporting factors for each 
dataset is shown in Fig. 2c, illustrating the weekly bias 

Fig. 1  a Case and death time series over the COVID-19 pandemic for both the UK and US, exemplifying the weekly oscillatory pattern common 
among most countries. b Distribution of reporting factor values (grouped by day of week) for daily death statistics globally, with selected countries 
highlighted. (Gaussian jitter was applied to x-axis values for visualisation purposes)

Table 1  The first two principal component loadings across 200 
countries illustrate the magnitude of reporting trends by day of 
week, with coefficients above 10 highlighted in bold

The first component demonstrates clear weekend under-reporting being 
compensated for during the week, while the second component suggests that 
over-reporting on Mondays may also be present for a set of countries

Day PC1 PC2

Monday 3.59 17.12
Tuesday 8.45 0.64

Wednesday 6.83 − 4.89

Thursday 4.99 − 6.07

Friday 2.17 − 5.15

Saturday − 11.32 − 4.82

Sunday − 14.71 3.17

% variation 36.4 29.9
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introduced by the publication process. Under-reporting 
is consistently observed on Sundays and Mondays, pos-
sibly corresponding to reduced death reporting over 
the weekend, combined with a single-day lag in data 
uploading to national reporting websites.

Impact of epidemic prevalence on reporting
To consider whether this reporting trend may be exac-
erbated by increased event counts (i.e. higher case or 
death numbers), associated with increased strain on 
healthcare reporting services, we considered the rela-
tionship between the reporting factor and current pan-
demic size. Our previous analysis has assumed that the 

reporting trend is a multiplicative noise term with a 
constant coefficient, but we consider whether this coef-
ficient may vary with the event number over the course 
of the epidemic.

Conducting a linear regression on the reporting fac-
tor against the event count for each day in the UK time 
series data, we find a small but statistically significant, 
positive slope coefficient for multiple days of the week 
(Supplementary Table S1). However, these results may 
be driven by a few influential points (see Supplemen-
tary Figures  S2-3), and the magnitude of the coef-
ficients obtained corresponds to a variation in the 
reporting factor of < 10% over the magnitude of event 
counts observed during the pandemic.

Fig. 2  a Death data for the UK, grouped by both the reporting date (when the death was recorded on online reporting statistics), and the event 
date (as documented on the death certificate). b A power spectrum analysis of both time series, considering a strong periodic oscillation 
in the reporting data grouping, which is not observed in the event date grouping. Weekly harmonics are indicated by vertical dashed lines. c 
Distribution of reporting factors in UK death data, with interquartile ranges marked as horizontal dashed lines. A strong bias is observed in the death 
data grouped by reporting date, which does not occur when deaths are attributed to true event date
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Discussion
Our work demonstrates a substantial periodic bias in 
COVID-19 reported case and death datasets both from 
the UK and across the globe, with a clear weekly fre-
quency. Previous analysis of these datasets (including 
by national governments) have removed such biases 
with a rolling average [22, 23], however this inevitably 
causes a delay in the appearance of trends within the 
data, impacting the efficacy of government interven-
tions. In infectious disease modelling, day-of-week 
effects can be incorporated into models of disease 
spread using, e.g., periodic functions [24] or more 
general day-of-week-specific delays between infection 
events and observed cases [25].

We use a combined dataset on primary and second-
ary events in UK death data to show that the weekly 
oscillation in this dataset can fully be explained by 
biases in the testing and reporting processes—pri-
marily under-reporting at weekends. Furthermore, we 
show that death datasets not subject to such biases do 
not exhibit any weekly periodicity. Bukhari et  al. [26] 
hypothesised that this under-reporting was a result 
of increased strain on health services coinciding with 
reduced reporting capacity at weekends. This is a pos-
sible manifestation of the ‘weekend effect’—a well-
documented and debated hypothesis that clinical care 
standards, event reporting and general patient out-
comes are lower at weekends [27–29]. This would imply 
that weekly oscillations in reported data would be 
accentuated when the healthcare services are under the 
most strain. Assuming epidemic prevalence is a good 
proxy for healthcare strain, we found a statistically sig-
nificant effect, however the magnitude of this effect was 
insufficient to substantially affect reporting procedures 
at the prevalence levels during the pandemic.

We also demonstrate that similar periodic biases exist 
in Haitian case data from the ongoing cholera epidemic. 
Given the water-based transmission mechanisms of this 
outbreak contrast dramatically with the primarily air-
borne transmission of coronavirus, it is likely such weekly 
trends are not isolated to these two outbreaks, instead 
being perhaps common across many epidemiological 
datasets.

The World Health Organization (WHO) acknowl-
edged that the collection and prompt publication of 
datasets recording occurrences of cases and deaths 
during the COVID-19 pandemic is crucial to the pan-
demic response in regions across the world [30]. In 
contrast, the response to the ongoing resurgence of 
cholera (with over 14,000 suspected cases in Haiti) has 
been limited by our degree of understanding of current 
disease dynamics. A recent (Jan 2024) WHO report 
[31] on the ongoing multi-country outbreak of cholera 

classified the global risk as ‘Very High’, reporting that 
strengthened surveillance and timely case management 
are urgently needed.

As our ability to track emerging epidemics in real-
time increases due to improving temporal data reso-
lution, it is increasingly important to understand the 
biases in such datasets. This allows a more informed 
and accurate inference of epidemiological parameters, 
such as delay distributions, for an ongoing pandemic 
[32]. These conclusions are highly relevant to health-
care providers in forecasting demand and to policymak-
ers seeking to determine interventions for containing 
infectious disease outbreaks.

Limitations
The authors only accessed death data grouped by date on 
the death certificate for the UK, so we can only conclude 
that weekly oscillations in the COVID-19 time series data 
are fully attributable to biases in the reporting process 
in this country. This result may explain similar biases we 
characterise in time series data reported globally, though 
equivalent ‘event date’ datasets would be required in each 
country to confirm this. Similarly, as these data are not 
available for the cholera epidemic we consider, we cannot 
confidently attribute the weekly bias we observed in chol-
era cases to biases in that reporting process. In particu-
lar, we highlight that (in voluntary testing settings) case 
data may be more affected by other weekly effects such as 
healthcare-seeking behaviour, in addition to biases in the 
underlying reporting dynamics.

We focus on time series datasets of cases and deaths. 
Other epidemiological time series, such as daily hospi-
talizations, may be expected to exhibit a wide variety of 
other cyclical trends, including weekly cycles, which we 
do not model or analyse in this study.

Furthermore, we only attribute these biases to the 
general reporting process and do not address the 
internal reporting mechanisms that contribute to 
widespread under-reporting over the weekend, nor to 
the extreme variation in reporting rates on Mondays 
observed in Fig. 2c and Table 1.
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