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Abstract 

Objective RNA-seq delivers valuable insights both to transcriptional patterns and mutational landscapes for tran-
scribed genes. However, as tumour cell lines frequently lack their matched-normal counterpart, variant calling 
without the paired normal sample is still challenging. In order to exclude variants of common genetic variation with-
out a matched-normal control, filtering strategies need to be developed to identify tumour relevant variants in cell 
lines.

Results Here, variants of 29 breast cancer cell lines were called on RNA-seq data via HaplotypeCaller. Low read 
depth sites, RNA-edit sites, and low complexity regions in coding regions were excluded. Common variants were 
filtered using 1000 genomes, gnomAD, and dbSNP data. Starting from hundred thousands of single nucleotide vari-
ants and small insertions and deletions, about thousand variants remained after filtering for each sample. Extracted 
variants were validated against the Catalogue of Somatic Mutations in Cancer (COSMIC) for 10 cell lines included 
in both data sets. Approximately half of the COSMIC variants were successfully called. Importantly, missing variants 
could mainly be attributed to sites with low read depth. Moreover, filtered variants also included all 10 cancer gene 
census COSMIC variants, a condensed hallmark variant set.
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Introduction
Cell lines are well accepted for studying complex bio-
logical processes and testing therapeutic efficacies of 
new agents, while contamination and misidentification 
of cell lines have caused massive costs and irreproducible 

research [1]. Hence their authentication and molecular 
characterisation are required for selection of appropriate 
in vitro models. For proper model selection in breast can-
cer research, the mutational landscape in breast cancer 
relevant genes should be considered for both inherited 
germline and somatic mutations in recurrently mutated 
genes (e.g. BRCA2, TP53), which might harbour tumour 
drivers [2, 3].

Commonly, genomic sequencing data is applied for 
identifying single nucleotide variants (SNVs) and small 
insertions and deletions (InDels) from whole exome 
and whole genome sequencing (WES/WGS). However, 
variants on expressed genes can be extracted from RNA-
sequencing (RNA-seq) data as a byproduct from tran-
scriptional profiling [4–6]. It is used as diagnostic tool 
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[7], for cell line identification [8] or for studying genetic 
heterogeneity in cell line populations [9].

On the other side, identifying variants without 
matched-normal samples, frequently absent for cell lines, 
adjustment for confounding common germline variants 
is required [10–13], otherwise leads to unreliable, biased, 
and inflated variant prediction [14–16]. Decontamination 
of germline variants usually occurs by filtering out com-
mon variants. To date, filtering variants on tumour-only 
samples on RNA-seq basis still remains to be optimised.

This study proposes a straightforward pipeline to 
enhance variant filtering on RNA-seq without matched-
normal pairs for breast cancer cell lines as described 
with modifications [17]. As there was no suitable pipe-
line existent for this dataset, we developed an adjusted 
workflow on variants called via the HaplotypeCaller from 
the popular Genome Analysis Toolkit (GATK) [18], that 
showed higher sensitivity compared to Mutect2 [19] 
and was employed by the Cancer Cell Line Encyclope-
dia (CCLE) [20]. Here, several filter steps are proposed, 
which haven’t been specified for tumour-only RNA-seq 
data of cell lines to this extent so far.

Materials and methods
Cell lines and RNA‑seq
All authenticated 29 human breast cancer cell lines 
are available at the DSMZ cell line bank (Germany) 
[17]. RNA-sequencing and analysis were performed as 
described [17, 21]. Expression data were made accessible 
via DSMZCellDive [22]. Library sizes spanned between 
30-60 million 150bp paired-end reads for each sam-
ple, which was described to suffice for calling variants 
robustly on RNA-seq data in tumour samples [23]. For 
gaining non-redundant reads for variant calling, insert 
sizes were aimed at 2x150bp length [24]; here, average 
mapped read lengths varied around 298bp. Raw data are 
stored at BioStudies (S-BSST1200) and at ArrayExpress 
(E-MTAB-14655).

Variant calling pipeline
SNVs and small InDels were called on RNA-seq basis as 
described previously [17] with altered filtering steps: (a) 
an added low complexity regions (LCRs) filter, (b) a 1/3 
frequency filter in the sample set, which was set to 20% 
in this study, and (c) the omitted PolyPhen/Sift filter, as 
silent variants were contained in the COSMIC evaluation 
comparison. An overview on the filtering steps is given in 
Fig. 1.

Specifically after trimming and mapping (see Supple-
mentary Methods), variants were called by the GATK 
HaplotypeCaller (4.3.0) following best practices [25], 
including variants with a minimum mapping quality 
threshold for variant calling of 20, and omitting variants 

with <5 read depth and clusters of three or more variants 
in windows of 35 bp were applied by using the GATK 
tool bundle [25].

Regions within RNA-edit sites from REDIportal [26] 
and within LCRs [27, 28] were excluded for variant detec-
tion due to quality reasons by applying vcftools (0.1.16) 
[29] and SnpSift (5.1d) [30].

For filtering common variants, data from 1000 
genomes project phase3 [31], gnomAD r2.1.1 [32], and 
dbSNP v156 [33] were implemented setting the allele 
frequency to >0.01 using SnpSift, snpEff [34], vcftools, 
vcf2maf [35], and VEP (105) [36] while concentrating on 
coding regions.

In addition, variants occurring in more than 20% of the 
samples were removed, since many of these variants were 
located in homopolymer or repetitive regions.

Open access to this pipeline is availbale at zenodo [37] 
and github [38], variant data at the European Variation 
Archive (EVA) [39] (PRJEB82834).

Variant evaluation
Extracted variants were compared to COSMIC data (v97) 
[40] with cell line source DSMZ and labeled with verified 
or known (see Supplementary Table S1). Analysis of sen-
sitivity and specificity were based on these congruent 400 
variants and 10 cell lines (see Supplementary Fig. S1).

Beside automatically generated COSMIC variants, 
COSMIC CGC variants were matched, derived from 
expert-curated cancer mutant census (CMC, v98) [41].

Fig. 1 Scheme for filter steps in the presented pipeline based 
on RNA-seq tumour-only breast cancer cell lines. As the majority 
of germline variants are dispensable and cannot be detected 
without matched-normal samples, several filter steps were applied 
to the identified variants. Detailed descriptions are given in the text
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Visualisation of highly mutated genes was done as 
waterfall plot with the R package GenVisR (1.30.0) [42].

Results
Variant calling
SNVs and InDels were called on the RNA-seq data of 29 
breast cancer cell lines without matched-normal sam-
ples, which we have recently characterised [17]. Lack-
ing normal pairs for variant calling caused flooding with 
numerous insignificant variants, but kept potentially 
inherited pathogenic germline variants, e.g. in BRCA2, 
and demanded a profound filtering.

Filtering out low quality sites by mapping quality and 
read depth halved the number of variants with initial 
sizes of about 176,000–435,000 (Fig. 2a). Mutations were 
excluded, if they were located within known posttran-
scriptional RNA-editing sites (31–46% of all variants), 
which may result in a modified nucleotide on RNA level 
but does not relate to variants on DNA level [43], and 
within low complexity regions (27-39%), where sequenc-
ing is less accurate [28]. Further removal of common 
variants by dbSNP reduced the number of variants to 
the level of 5-9% of initially called variants (Fig. 2a). After 
excluding all common variants by 1000 Genomes, dbSNP, 
gnomAD curated data, as well as variants outside protein 
coding regions, about 1000 variants per sample remained 
(Fig. 2b, snv_indel).

Sequencing errors for RNA-seq have proved to bias 
SNVs and InDel detection in repetitive regions [44, 45]. 
Since we found identical variants for many cell lines 
residing within homopolymers or repetitive regions, 
an additional filter on variants in >20% of cell lines was 
applied (Fig. 2b, snv_indel_20), resulting in an additional 
reduction (17-33%). Finally, 0.2−0.6% of all variants 
remained ranging from 644 to 1384 per sample (see Sup-
plementary Table S2). Remarkably, the weak correlation 
between library sizes and called variants diminished with 
each filtering step (Fig. 2c).

Variant evaluation
In order to investigate accuracy, filtered variants were 
compared to COSMIC data generated by genome 
sequencing. Of 1020 cancer cell lines included in COS-
MIC, 10 were authenticated breast cancer cell lines also 
originating from the DSMZ culture collection and could 
be used for evaluation. A total of 400 verified COSMIC 
variants in 353 genes of these 10 cell lines served as basis 
for comparison, of which 188 could be determined by our 
workflow (Fig. 3a, Supplementary Table S1). While sen-
sitivity remained unchanged, specificity increased over 
the filtering procedure (Supplementary Fig. S1). Most 
of the missed variants could be traced to low read depth 
(<5) and some were filtered out due to LCR localisation 

(Fig. 3b). Two variants identified by the pipeline were dis-
carded by the last filter frequency across all breast cancer 
samples (>20%) resulting in 212 missed COSMIC vari-
ants (Supplementary Table S1). Analysis of the 353 genes 
as transcripts per million (TPM) revealed that (~60%) of 
the genes were expressed <16 TPM (Fig. 3c, Supplemen-
tary Table S3). This is in agreement to a study, in which 
over 65% variants in coding regions were missed by 
RNA-seq over WES due to low expression [46].

Apart from the automatically generated COSMIC 
variant list, a further plausibility check was to compare 
the filtered variants to the COSMIC cancer gene census 
(CGC) representing expert-curated cancer-driving gene 
data. CGC derived mutation census comprised 10 vari-
ants for PIK3CA, PTEN, APC, and TP53 in seven breast 
cancer cell lines, which were identified by our pipeline 
(Table 1).

Additionally, a summary of the extracted variants was 
visualised (Supplementary Fig. S2). For this, variants of 
all 29 breast cancer cell lines were restricted to the 353 
genes of the COSMIC variants and filtered to the muta-
tion types as listed in Supplementary Fig. S2a. The top-
most 50 genes with highest number of variants were 
selected. The gene on rank one was the tumour suppres-
sor TP53, on rank five PIK3CA and rank six BRCA2, all 
implicated in breast cancer progression [2, 3, 47]. The 
major fraction of variants harboured missense mutations 
(Supplementary Fig. S2). Functional effects of specific 
mutations were addressed previously [17].

Discussion
Some limitations of RNA-seq based variant calling are 
tissue specific variability, depth of coverage and conse-
quentially allelic drop-out events, RNA-editing [5, 26], or 
sequencing artefacts [44, 45]. Nevertheless, the two last 
points can be addressed by filter adjustment. Addition-
ally, RNA-seq can be exploited twofold for transcriptom-
ics and genetic variation. Moreover, RNA-seq was found 
to reveal potential new somatic variants over WES [5]. 
Tumour mutational burden (TMB) detected by RNA-seq 
was shown to resemble the TMB determined on genomic 
data [12].

In this workflow of variant detection on RNA-seq data 
of breast cancer cell lines without matched-normal sam-
ples, we strived for variants including germline ones, 
since inherited risk factors are well-known in recurrently 
mutated genes for breast cancer [2, 3]. Since variant call-
ing including germline variants results in massive vari-
ant amounts, we included following downstream filters: 
coverage depth, RNA-editing sites, LCRs, three differ-
ent common variant databases, and sample frequency 
for coding regions, of which parts only were applied 
elsewhere for RNA-seq based variant calling on patient 
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data [48]. Concerning RNA-editing sites, about 16 mil-
lions of A-to-I events, which are sequenced as guanosine, 
are described for humans [26]. As RNA-edits cannot 
be distinguished from genomic variants by RNA-Seq, 
variant calls at those were excluded. According to Li, 
2014 [28], LCRs comprise 2% of the human genome, in 
which the majority of SNVs and InDels are called with 

false positive rates of 10-40%, arguing for a further filter. 
As we observed the same variants in >20% of cell lines, 
residing in homopolymer and repetitive sequences, vari-
ants detected across more than one fifth of samples were 
omitted. Although 7% of breast cancer patients were 
predicted to carry inherited cancer mutations [49], we 
cannot rule out that these 29 cell lines fully represent 

Fig. 2 Amount of variants for all 29 breast cancer cell lines based on RNA-seq data. a Filtering by read depth and quality (pass) reduced variant 
numbers markedly, whereas RNA-edit sites (edit) and low complexity regions (lcr) affected less variants. b Further filtering of dbSNP (dbsnp) 
data lowered numbers per sample substantially. Finally, focussing on variants in protein coding regions (snv_indel) and variants in less than 20% 
of samples resulted in about 1000 variants per sample (snv_indel_20). Mutations included single nucleotide variants (SNVs), insertion and deletions 
(InDel). c Correlation between mapped million reads and filtered variants decreased with every filtering step



Page 5 of 7Eberth et al. BMC Research Notes           (2025) 18:67  

this tumour entity, because some subtypes might be 
over- or underrepresented in the in vitro models. More-
over, for different cancer types this filter needs to be 
adapted accordingly, e.g. hotspot mutations would be 
missed by this such as BRAF V600E, found in 35% mela-
noma patients [50], and specific genes were recurrently 
mutated in 20% DLBCL patients [51], requiring a higher 
threshold.

Several workflows on variant detection based on RNA-
seq were described, however, for somatic mutations the 
standard approach includes matched-normal samples 
[52–54], which are often unavailable for standard cell 
lines. Among the tools and pipelines, which cope with 
tumour-only samples, some lack filtering of RNA-edit 

sites, LCRs [5, 8, 48, 55–57] and common SNPs described 
in 1000 Genomes, gnomAD, and dbSNP [58, 59], which 
are part of our pipeline, or lack open source code [60]. 
More recently, machine or deep learning tools for clas-
sifying and filtering variants have been designed to serve 
a broad range of different cancer types [4, 12].

Finally, while working with cell lines, it is inevitable 
to ensure their authenticity, since differences between 
laboratories have been observed due to contamination 
and misidentification [1, 61]. Here, the combination of 
authenticated cell lines and their molecular characteris-
tics warranted quality to the 29 breast cancer cell lines. 
It adds methological aspects to our recent publication 
on these mentioned tumour cell lines [17]. This provides 
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Fig. 3 Comparing filtered variants called from RNA-seq with genomic COSMIC variants. a 10 breast cancer cell lines were of the same origin 
as employed in this study. 188 of the 400 verified COSMIC variants in the 10 cell lines were recognised by our pipeline (found: yes). b A few missed 
variants were attributed to low complexity regions (LCR), whereas a great portion of missed variants fell out due to low depth (Depth). c Expression 
of the 353 genes associated with the 400 COSMIC variants was illustrated as heatmap adding 1 on transcripts per million (TPM) values prior to log2 
conversion

Table 1 Cancer gene census (CGC) variants in all COSMIC variants from DSMZ breast cancer cell lines

All 10 CGC variants of the overlapping CGC breast cancer cell line variants were found by our pipeline. HGVSG and Mutation AA follow the Human Genome Variation 
Society (HGVS) nomenclature standard for genomic and protein/amino acid levels, respectively

Cell line Gene symbol HGVSG Mutation AA Mutation description

BT-474 PIK3CA 3:g.179199158G C p.K111N Substitution - Missense

CAL-148 PTEN 10:g.87957976T A p.I253N Substitution - Missense

CAL-148 PTEN 10:g.87960984C T p.Q298 Substitution - Nonsense

CAL-148 PIK3CA 3:g.179234297A G p.H1047R Substitution - Missense

CAL-51 PIK3CA 3:g.179218294G A p.E542K Substitution - Missense

DU-4475 APC 5:g.112840323G T p.E1577 Substitution - Nonsense

EFM-19 PIK3CA 3:g.179234297A T p.H1047L Substitution - Missense

EVSA-T PTEN 10:g.87961047_87961050del p.T319 Deletion - Frameshift

EVSA-T TP53 17:g.7674241G C p.S241C Substitution - Missense

MFM-223 PIK3CA 3:g.179234297A G p.H1047R Substitution - Missense
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comprehensive and novel insights to a variety of models 
to study breast cancer for development of new therapies.

Limitations
Neglected aspects of this study critical for estimating 
relevance and potential pathogenicity of the extracted 
variants:

• Failing relevant variants occuring at high frequency 
within certain populations

• Copy number alterations
• Abnormal zygosity
• Manual adaptations to adjust specific data sets and 

cancer types
• WES/WGS for resolution of allelic drop-outs and 

lowly expressed genes
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