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Abstract 

Objective The main purpose of this work is to present cubic non-polynomial spline approximation method for solv-
ing Robin-type singularly perturbed reaction–diffusion problems.

Results The solution domain is first discretized using a piecewise mesh. The process begins by defining the cubic 
non-polynomial spline function and calculating its derivatives. These derivatives are then transformed into differ-
ence approximations, forming a linear system of algebraic equations in the form of a three-term recurrence relation, 
which is solved using an elimination algorithm. The stability and consistency of the method are analyzed, ensuring 
convergence. Numerical model examples are used to validate the proposed method, and the results are compared 
with those from other methods found in the literature. The maximum absolute error and the order of convergence 
for each example demonstrate the effectiveness and core contribution of the method.
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Introduction
Mathematically modeled problems involve constructing 
a set of equations that consistently describe the charac-
teristics or behavior of a physical system. Differential 
equations are often used to model various physical phe-
nomena, where specific conditions are defined for the 
problem being studied [1]. A singularly perturbed differ-
ential equation arises when the highest order derivative is 
multiplied by a small positive parameter, called the per-
turbation parameter. These types of equations frequently 
appear in various fields of applied mathematics and engi-
neering, including fluid mechanics, elasticity, quantum 

mechanics, chemical-reactor theory, aerodynamics, 
plasma dynamics, oceanography, meteorology, and the 
modeling of semiconductor devices [2–5].

The importance of these problems in real-world appli-
cations underscores the need for effective numerical 
methods to approximate their solutions. Numerical 
methods provide a practical approach when exact ana-
lytical solutions are either impossible or too complex to 
derive [2]. Among these, finite-difference methods are 
widely used for solving differential equations by approxi-
mating derivatives with finite differences. These methods 
transform differential equations into a system of algebraic 
equations that can be solved using iterative techniques.

Singularly perturbed problems are broadly categorized 
into reaction–diffusion and convection–diffusion types. 
As the perturbation parameter approaches zero, the order 

*Correspondence:
Tesfaye Aga Bullo
tesfayeaga2@gmail.com
1 Department of Mathematics, Jimma University, Jimma, Ethiopia

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13104-025-07117-2&domain=pdf


Page 2 of 14Esayas Ayele et al. BMC Research Notes           (2025) 18:86 

of the differential equation reduces by one or two [6–9]. 
These problems can also be classified based on boundary 
conditions, such as Dirichlet, Robin, or mixed conditions. 
In particular, second-order singularly perturbed reaction–
diffusion problems with Robin boundary conditions exhibit 
boundary layers on both the left and right sides. This study 
focuses on the numerical solution of linear, second-order, 
singularly perturbed reaction–diffusion ordinary differen-
tial equations with Robin-type boundary conditions.

The challenge in solving singularly perturbed problems 
lies in the fact that the solution may vary rapidly in some 
parts of the domain and slowly in others, depending on the 
perturbation parameter [7, 8]. Standard numerical meth-
ods often fail to provide accurate results for these prob-
lems, especially as the perturbation parameter approaches 
zero. Therefore, it is crucial to develop numerical methods 
that are uniformly convergent and unaffected by the per-
turbation parameter. This study aims to develop such a 
method for Robin-type singularly perturbed reaction–dif-
fusion problems.

Several numerical methods have been proposed in the lit-
erature for solving singularly perturbed reaction–diffusion 
problems [2, 5, 10–14], with many focusing on Dirichlet 
boundary conditions. However, more recent studies have 
addressed Robin-type boundary conditions [15–18], intro-
ducing higher-order finite difference methods for these 
problems. Also, the novel numerical methods, along with 
a detailed continuous solution analysis, are presented in 
ref. [15, 27, 28]. Despite these advances, there is still room 
for improvement in terms of the accuracy and convergence 
rates of the numerical solutions. Thus, the main objective 
of this work is to develop a higher-order, uniformly conver-
gent numerical method for solving Robin-type singularly 
perturbed reaction–diffusion problems, along with a theo-
retical error analysis and numerical validation.

Description of the method
This paper deals with the Robin type singularly perturbed 
reaction diffusion problem of the form:

where 0 < ε << 1 is the singular perturbation parameter, 
and a0, a1, d0, d1, η0, η1 with a1, d1  = 0 are given con-
stants. The main purpose of this condition is to ensure 
the applicability of Robin-type boundary conditions. If 
this condition is not fulfilled, the problem shifts to a form 
with Dirichlet boundary conditions, which are more 

(1)











Ly(x) ≡− εy′′(x)+ b(x)y(x) = f (x), 0 < x < 1,

BLy(0) ≡a0y(0)− a1
√
εy′(0) = η1,

BRy(1) ≡d0y(1)+ d1
√
εy′(1) = η2,

widely addressed by existing methods in the literature. 
The differential operators are denoted by L, BL, BR.

The functions b(x) and the source f (x) function are 
assume to be sufficiently smooth functions such that 
b(x) ≥ b0 > 0, ∀x ∈ [0, 1] . Also, assume that the given 
constant values given in robin type boundary condi-
tions satisfy aj , dj ≥ 0 and aj + dj > 0, j = 0, 1

.Then, the problem in Eq.  (1) has a unique solution 
y(x) ∈ C2(0, 1) ∩ C1[0, 1] that typically exhibits bound-
ary layers both at x = 0 and x = 1 when the perturbation 
parameter sufficiently small. The detailed proofs of the 
existence and uniqueness of the continuous solution for 
this defined problem is provided in ref. [15].

Piecewise mesh generation
We construct a piecewise mesh that contains more num-
ber of nodal points in the layer regions than non-layer 
region. The domain [0, 1], N ≥ 4 for N is even mul-
tiple integer of 4, is divided into three subintervals, 
[0, τ ], [τ , 1− τ ], [1− τ , 1] where the chosen transition 
parameter,

denotes the width of the boundary layers. The domain 
[0, 1]N is obtained by putting a non-uniform mesh with N4  
mesh elements in both the layer intervals and a uniform 
mesh with N2  mesh elements in the outer layer region.

A general piecewise mesh 
[0, 1]N = {0 = x0, x1, x2, ..., xN = 1} with step size will be 
defined:

Formulation of the method (cubic non‑polynomial 
spline approximation)
Now, in order to develop the non-polynomial cubic 
spline approximation for the problems in Eq.  (1), the 
interval [0, 1] is divided into N sub-intervals. Let y(xi) 
be the exact solution to the problem in Eq.  (1), and 
yi be an approximation to y(xi) , obtained by the seg-
ment S(x) of the spline function passing through the 
points (xi, yi) and (xi+1, yi+1) . Also, let us consider the 

(2)τ = min

{

1

4
, 2

√
ε ln(N )

}

,

(3)

hi = xi − xi−1 =































4τ

N
, i = 1, 2, ...,
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non-polynomial cubic spline function S(x) in subinterval 
[xi, xi+1], i = 1, ... , N − 1 , of the form:

where, ci, di, ui, and vi are unknown coefficients to be 
determined, and ω is a free parameter, which is used to 
raise the accuracy of the method.

To determine the unknown coefficient in Eq.  (4), let us 
denote:

(4)

S(x) =ci + di(x − xi)+ ui(e
ω(x−xi) − e

−ω(x−xi))

+ vi(e
ω(x−xi) + e

−ω(x−xi))
Differentiating Eq. (4) successively, we get:

Using relations in Eqs. (5) and (7), we have:that results

Again, using the relation in Eqs. (5), (8) into Eq. (4) at the 
point xi , yields:and it gives

Using the relation in Eqs. (5), (7) at the point xi+1 and let-
ting θ2 = ωhi+1, we have:

(5)

S(xi) = yi , S
′(xi) = mi , S

′′(xi) = Mi ,

S(xi+1) = yi+1, S
′(xi+1) = mi+1, S

′′(xi+1) = Mi+1,

(6)

S
′(x) =di + ωui(e

ω(x−xi) + e
−ω(x−xi))

+ ωvi(e
ω(x−xi) − e

−ω(x−xi))

(7)

S
′′(x) =ω2

ui(e
ω(x−xi) − e

−ω(x−xi))

+ ω2
vi(e

ω(x−xi) + e
−ω(x−xi))

S′′(xi) = ω2ui(e
ω(xi−xi) − e−ω(xi−xi))+ ω2vi(e

ω(xi−xi) + e−ω(xi−xi)) = Mi

= ω2ui(1− 1)+ ω2vi(1+ 1) = Mi

= 2ω2vi = Mi

(8)vi =
Mi

2ω2
.

S(xi) = ci + di(xi − xi)+ ui(e
ω(xi−xi) − e−ω(xi−xi))+ vi(e

ω(xi−xi) + e−ω(xi−xi)) = yi

= ci + ui(1− 1)+ vi(1+ 1) = yi

= ci + 2vi = yi

(9)ci = yi −
Mi

ω2

S′′(xi+1) = ω2ui(e
ω(xi+1−xi) − e−ω(xi+1−xi))+ ω2vi(e

ω(xi+1−xi) + e−ω(xi+1−xi)) = Mi+1

ω2ui(e
ωhi+1 − e−ωhi+1)+ ω2vi(e

ωhi+1 + e−ωhi+1) = Mi+1

ui(e
θ2 − e−θ2)+ vi(e

θ2 + e−θ2) =
Mi+1

ω2

ui(e
θ2 − e−θ2) =

Mi+1

ω2
− vi(e

θ2 + e−θ2), But, vi =
Mi

2ω2
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It gives

Also, using the relation in Eqs.  (5), Eq.  (4) at the point 
xi+1 and for θ2 = ωhi+1, we get:this results

(10)ui =
Mi+1

ω2(eθ2 − e−θ2)
−

Mi

2ω2

(eθ2 + e−θ2)

(eθ2 − e−θ2)

S(xi+1) = ci + di(xi+1 − xi)+ ui(e
ω(xi+1−xi) − e−ω(xi+1−xi))+ vi(e

ω(xi+1−xi) + e−ω(xi+1−xi)) = yi+1

yi+1 = ci + dihi+1 + ui(e
ωhi+1 − e−ωhi+1)+ vi(e

ωhi+1 + e−ωhi+1)

yi+1 = ci + dihi+1 + ui(e
θ2 − e−θ2)+ vi(e

θ2 + e−θ2)

yi+1 = yi −
Mi

ω2
+ dihi+1 +

Mi+1

ω2
−

Mi

2ω2
(eθ2 + e−θ2)+

Mi

2ω2
(eθ2 + e−θ2)

yi+1 − yi = dihi+1 +
Mi+1 −Mi

ω2

Using the continuity condition of the first derivative at 
xi , S′�−1(xi) = S′�(xi) , we obtain:

Reducing indices of Eqs. (10) and (11) by one and sub-
stituting into Eq. (12), and after multiplying both sides by 

2
hi+hi+1

 , and due to the parameters 
θ1 = ωhi, and θ2 = ωhi+1, we have the parameter 
ω = θ1+θ2

hi+hi+1
 , so that we get:

where the coefficients are denoted by:

As θ1 → 0, θ2 → 0 in Eq. (13), we get the sum of the 
two constants, α + β = 1

2 and their values will be deter-
mined from local truncation error.

Considering the second order differential equation 
in Eq.  (1) at the nodal point xi and using the relation in 
Eq. (5), corresponding to Mi = y′′i = S′′(x) which yields:

(11)di =
yi+1 − yi

hi+1
−

Mi+1 −Mi

hi+1ω
2

(12)

di−1 + ωui−1(e
θ1 + e

−θ1)

− ωvi−1(e
θ1 − e

−θ1) = di + 2ωui

(13)

2

hi + hi+1

[

yi+1 − yi

hi+1

−
yi − yi−1

hi

]

= αMi−1 + 2βMi + αMi+1

α =
2

hi + hi+1

(

1

hiω2
−

e2θ1 + e−2θ1

ω(eθ1 − e−θ1)

)

=
2

hi + hi+1

(

1

hi+1ω
2
−

2

ω(eθ2 − e−θ2)

)

,

β =
1

hi + hi+1

(

(eθ1 + e−θ1)

ω(eθ1 − e−θ1)
+

(eθ2 + e−θ2)

ω(eθ2 − e−θ2)
−

hi + hi+1

hihi+1ω
2

)

.

Thus, substituting Eq. (14) into Eq. (13) and also rear-
ranging yields the finite difference scheme that re-written 
in three term recurrence relations:

where,

(14)

Mi =
biyi − fi

ε

Mi−1 =
bi−1yi−1 − fi−1

ε

Mi+1 =
bi+1yi+1 − fi+1

ε

(15)
Eiyi−1 + Fiyi + Giyi+1 = Hi, i = 1, 2, ... ,N − 1

Ei =
−2ε

hi(hi + hi+1)
+ αbi−1 , Fi =

2ε

hihi+1
+ 2βbi,

Gi =
−2ε

hi+1(hi + hi+1)
+ αbi+1, Hi = αfi−1 + 2βfi + αfi+1.
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Truncation error (To determine the values 
of α and β)
For the formulated cubic spline method, the truncation 
error is obtained from Eq. (13) as:

From the relation in Eq. (5) and by expanding Eq. (16) 
in Taylor’s series about xi , we have the simplified trunca-
tion error:

In order to obtain the higher order method, and for suf-
ficiently cases of the mesh lengths, we choose the value of 
α and β as:

(16)

Ti =
2

hi + hi+1

[

yi+1 − yi

hi+1

−
yi − yi−1

hi

]

−(αMi−1 + 2βMi + αMi+1)

(17)

Ti = (1− 2(α + β))y′′i + (hi+1 − hi)

{

1

3
− α

}

y′′′i +

{

2

hi + hi+1

(

h3i+1 + h3i
4!

)

−
α

2

(

h2i+1 + h2i

)

}

y
(4)
i +

{

2

hi + hi+1

(

h4i+1 − h4i
5!

)

−
α

3!

(

h3i+1 − h3i

)

}

y
(5)
i +

{

2

hi + hi+1

(

h6i+1 + h6i
6!

)

−
α

4!

(

h4i+1 + h4i

)

}

y
(6)
i + ...











α + β =
1

2
,

1

3
− α = 0.

, α =
1

3
,β =

1

6
,

⇒
2

hi + hi+1

(

h3i+1 + h3i
4!

)

−
α

2

(

h2i+1 + h2i

)

=
2

hi + hi+1

(

h3i+1 + h3i
4!

)

−
1

6

(

h2i+1 + h2i

)

=
1

6

{(

h3i+1 + h3i
2(hi+1 + hi)

)

−
(

h2i+1 + h2i

)

}

=
1

6

{

h3i+1 + h3i − 2(h3i+1 + hih
2
i+1 + hi+1h

2
i + h3i )

2(hi+1 + hi)

}

=
1

6

{

−h3i+1 − 2hih
2
i+1 − 2hi+1h

2
i − h3i )

2(hi+1 + hi)

}

≤ (h2i + h2i+1)

and similarly, 











α + β =
1

2
,

1

12
− α = 0.

,α = 1
12 ,β = 5

12 ,

This yields the second order and fourth order convergent 
respectively.

Boundary conditions (end conditions)
For i = 0, at x0 = 0 , we have the discretized form of the 
first boundary condition, BLy(0) as

In order to formulate the finite difference approxima-
tion to Eq. (18), adapting the Taylor series expansion,

(18)a0y0 − a1
√
εy′0 = η1

(19)

yi+1 =yi + hi+1y
′
i +

h2i+1

2
y′′i +

h3i+1

3!
y′′′i +

h4i+1

4!
y
(4)
i

+
h5i+1

5!
y
(5)
i +

h6i+1

6!
y
(6)
i + ...
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Considering Eq. (19) at the nodal point x0 , to approxi-
mation the first derivative in boundary condition, we 
obtain

where the local truncation error for the left boundary 
condition is.
TBL = − h41

5! y
(5)
0 − h51

6! y
(6)
0 + ....

Differentiating the second order differential equation 
Eq.  (1) twice with respect to the independent variable 
and considering it at the discretized points, we obtain

Hence, from Eq.  (21) the values of y′′0 , y′′′0 , y
(4)
0  , 

obtained at the nodal point x0 as:

Substituting Eq.  (22) into Eq.  (20) and rearranging 
yields

Hence, for i = 0, substituting Eq. (23) into Eq. (20), we 
get the scheme:

(20)

y′0 =
y1 − y0

h1
−

h1

2
y′′0 −

h21
3!
y′′′0 −

h31
4!

y
(4)
0 + TBL,

(21)

y′′i =
biyi − fi

ε

y′′′i =
biy

′
i + b′iyi − f ′i

ε
,

y
(4)
i =

biy
′′
i + 2b′iy

′
i + b′′i yi − f ′′i
ε

.

(22)

y′′0 =
b0y0 − f0

ε
,

y′′′0 =
b0y

′
0 + b′0y0 − f ′0

ε
,

y
(4)
0 =

b0y
′′
0 + 2b′0y

′
0 + b′′0y0 − f ′′0
ε

.

(23)
y′0 =

1
h1
y1 −

{

h21b
′
0

3!ε + h31b
′′
0

4!ε + b0
ε

(

h31b0
4!ε + h1

2

)

+ 1
h1

}

y0 + 1
ε

{

h31b0
4!ε + h1

2

}

f0 +
h21
3!ε f

′
0 +

h31
4!ε f

′′
0

1+ h21b0
3!ε + 2h31b

′
0

4!ε

.

(24)

[

a0

(

1+
h21b0

3!ε
+

2h31b
′
0

4!ε

)

+ a1
√
ε

{

h21b
′
0

3!ε
+

h31b
′′
0

4!ε
+

b0

ε

(

h31b0

4!ε
+

h1

2

)

+
1

h1

}]

y0 −
a1
√
ε

h1
y1

= η1

(

1+
h21b0

3!ε
+

2h31b
′
0

4!ε

)

+ a1
√
ε

{

1

ε

{

h31b0

4!ε
+

h1

2

}

f0 +
h21
3!ε

f ′0 +
h31
4!ε

f ′′0

}

.

Similarly, for i = N , at xN , we have the discretized form 
of the second boundary condition, BRy(1) as

At any nodal point xi , the Taylors’ series expansion writ-
ten as

Then, adapting this expansion for the nodal point xN , to 
approximation the first derivative in the second boundary 
condition, we get:

where the local truncation error for the second boundary 
condition is
TBR = − h4N

5! y
(5)
N + h5N

6! y
(6)
N + ....

Similar to Eq. (22), from Eq. (21) at the nodal point xN , 
considering the values of y′′N , y′′′N , y

(4)
N  , and also substitut-

ing it into Eq. (27), we get:

(25)d0yN + d1
√
εy′N = η2.

(26)
yi−1 = yi − hiy

′
i +

h2i
2
y′′i −

h3i
3!
y′′′i +

h4i
4!

y
(4)
i −

h5i
5!
y
(4)
i +

h6i
6!
y
(6)
i + ...

(27)

y′N =
yN − yN−1

hN
+

hN

2
y′′N −

h2N
3!

y′′′N +
h3N
4!

y
(4)
N + TBR,
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Now, substituting this value of y′N in Eq. (28) into Eq. (25) 
gives the scheme

To conclude formulation of the method, the three equa-
tions in Eqs.  (15), (24) and (29) constitute the system of 
(N + 1)× (N + 1) linear algebraic equations, that give the 
approximations y0, y1, ... , yN of the solution y(x) at the 
nodal points,x0, x1, ... , xN , with piecewise mesh length 
hi . This can be re-written in matrix form

where the three matrices are defined

M = (mij)(N+1)×(N+1) =



















B0 C0 0 · · · 0

A1 B1 C1
. . .

...

0
. . .

. . .
. . . 0

...
. . . AN−1 BN−1 CN−1

0 · · · 0 AN BN



















, Y =













y0
y1
...

yN−1

yN













, R =













H0

H1

...
HN−1

HN













,
with the specific entries are denoting:

(28)
y′N =

−yN−1

hN
+

{

1
hN

− h2Nb′N
3!ε + h3Nb′′N

4!ε + hN bN
2ε + h3Nb2N

4!ε2

}

yN −
(

hN
2ε + h3NbN

4!ε2

)

fN + h2N f ′N
3!ε − h3N f ′′N

4!ε

1+ h2NbN
3!ε − 2h3Nb′N

4!ε

.

(29)

−d1
√
ε

hN
yN−1 +

[

d0

(

1+
h2NbN

3!ε
−

2h3Nb
′
N

4!ε

)

+ d1
√
ε

(

1

hN
−

h2Nb
′
N

3!ε
+

h3Nb
′′
N

4!ε
+

hNbN

2ε
+

h3Nb
2
N

4!ε2

)]

yN

= η2

(

1+
h2NbN

3!ε
−

2h3Nb
′
N

4!ε

)

+ d1
√
ε

(

hN

2ε
+

h3NbN

4!ε2

)

fN − d1
√
ε
h2N f

′
N

3!ε
+ d1

√
ε
h3N f

′′
N

4!ε
.

(30)MY = R,

For i = 0, B0 = a0

(

1+
h21b0

3!ε
+

2h31b
′
0

4!ε

)

+ a1
√
ε

(

h21b
′
0

3!ε
+

h31b
′′
0

4!ε
+

b0

ε

(

h31b0

4!ε
+

h1

2

)

+
1

h1

)

,

C0 = −
a1
√
ε

h1
,

H0 = η1

(

1+
h21b0

3!ε
+

2h31b
′
0

4!ε

)

+ a1
√
ε

{

1

ε

(

h31b0

4!ε
+

h1

2

)

f0 +
h21
3!ε

f ′0 +
h31
4!ε

f ′′0

}

,
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Algorithm and its stability
The obtained finite difference approximation yields an 
(N + 1)× (N + 1) algebraic tri-diagonal system that can 
be solved by Gaussian elimination method. Hence, in using 
this method, we have the algorithm:

For i = 1, ... , N − 1 : Ai = Ei, Bi = Fi, Ci = Gi, and Hi = αfi−1 + 2βfi + αfi+1.

For i = N : AN =
−d1

√
ε

hN
,

BN = d0

(

1+
h2NbN

3!ε
−

2h3Nb
′
N

4!ε

)

+ d1
√
ε

(

1

hN
−

h2Nb
′
N

3!ε
+

h3Nb
′′
N

4!ε
+

hNbN

2ε
+

h3Nb
2
N

4!ε2

)

,

HN = η2

(

1+
h2NbN

3!ε
−

2h3Nb
′
N

4!ε

)

+ d1
√
ε

(

hN

2ε
+

h3NbN

4!ε2

)

fN − d1
√
ε
h2N f

′
N

3!ε
+ d1

√
ε
h3N f

′′
N

4!ε
.

Forward Elimination →



















































W0 =
C0

B0
,

T0 =
R0

B0
,

Wi =
Ci

Bi − AiWi−1
, i = 1, 2, ... , N + 1,

Ti =
Ri − AiTi−1

Bi − AiWi−1
, i = 1, 2, ... , N + 1.

Backward Elimination →







Setting CN = 0,

yN+1 = TN+1,

yi = Ti −Wiyi+1, i = N , N − 1, ... 2, 1.

Theorem 1: (Stability) Let M be a coefficient matrix of 
the tri-diagonal system, in Eq.  (30). Then, the matrix M 
is an irreducible and diagonally dominant matrix and 
hence the scheme is stable [26].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

xi

y i � = 10-3

� = 10-4

� = 10-6

Fig. 1 Effects of perturbation parameter on the solution for Example 
1 when, N = 64

Proof  To estimate the stability of the formulated 
method, we show that the coefficient matrix of the 
method satisfy the diagonal dominance. First, to check 
this, consider that b(x) ≥ b0 > 0, ∀x ∈ [0, 1] and for 
i = 1, ... , N − 1 , from Eq. (16), we have:
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Second, we consider the Robin boundary conditions at 
the two extremities i = 0 and i = N .

Thus, this implies that for each row of M , the sum of the 
two off-diagonal elements is less than or equal to the mod-
ulus of the diagonal element. Therefore, M is diagonally 
dominant. Hence, M is irreducible matrix. Henceforth, the 
Thomas Algorithm (Solution of general Tri-diagonal system) 
or Gaussian elimination method for solving the formulated 
scheme in Eq. (30) is stable for the described method.

Numerical examples and results
In order to test the validity of the proposed method and to 
demonstrate their convergence computationally, we have 
taken different model examples. The maximum absolute 
error is evaluated by:

where y(xi) and yi respectively, denotes the exact and 
approximate solutions. Further, the order of convergence 
calculated by the formula:

Example 1 Consider the singularly perturbed problem 
[15]

Bi ≥ Ai + Ci, (Fi ≥ Ei + Gi), i = 1, 2, ... , N − 1,

2ε

hihi+1
+ 2βbi ≥

−2ε

hi(hi + hi+1)
+ αbi−1 +

−2ε

hi+1(hi + hi+1)
+ αbi+1,

2ε

hihi+1
+ 2βb0 ≥

−2ε

hi(hi + hi+1)
+ αb0 +

−2ε

hi+1(hi + hi+1)
+ αb0,

2ε

hihi+1
+

5b0

6
>

−2ε

hihi+1
+

b0

12
.

For i = 0, B0 > C0,

B0 = a0

(

1+
h21b0

3!ε
+

2h31b
′
0

4!ε

)

+ a1
√
ε

(

h21b
′
0

3!ε
+

h31b
′′
0

4!ε
+

b0

ε

(

h31b0

4!ε
+

h1

2

)

+
1

h1

)

, C0 = −
a1
√
ε

h1
.

For i = N : BN > AN ,

AN =
−d1

√
ε

hN
, BN = d0

(

1+
h2NbN

3!ε
−

2h3Nb
′
N

4!ε

)

+ d1
√
ε

(

1

hN
−

h2Nb
′
N

3!ε
+

h3Nb
′′
N

4!ε
+

hNbN

2ε
+

h3Nb
2
N

4!ε2

)

.

EN
ε = max

xi∈[0,1]N
|y(xi)− yi|,

R =
log(EN

ε )− log(E2N
ε )

log(2)
.

The source function is given by

The exact solution to the problem that satisfies the 
above boundary conditions is given by.

y(x) = 1+ (x − 1)e
−x√
ε − xe

−(1−x)√
ε .

Example 2 Consider the singularly perturbed problem 
[16]

 















−εy′′(x)+ (1+ x(1− x))y(x) = f (x), 0 < x < 1,

y(0)−
√
εy′(0) = −1−

√
ε + e

−1√
ε ,

y(1)+
√
εy′(1) = −1−

√
ε + e

−1√
ε .

f (x) =1+ x(1− x)+ [2
√
ε − x(1− x)2]e

−x√
ε

+ [2
√
ε − x

2(1− x)]e
−(1−x)√

ε .
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Fig. 2 Numerical solution versus exact solution for Examples 2 and 3 respectively, when N = 64, ε = 10− 4

Table 1 Computed maximum absolute errors for Example 1 by the proposed method on uniform mesh when α = 1
12
, β = 5

12

ε ↓ N → 64 128 256 512 1024 2048

10− 3 2.9485e−04 2.0460e−05 1.3407e−06 8.5692e−08 5.4143e−09 3.4022e−10

10− 4 1.5204e−02 1.4654e−03 1.0970e−04 7.4149e−06 4.8043e−07 3.0548e−08

10− 6 6.0163e−01 3.6419e−01 1.4058e−01 2.8215e−02 3.1066e−03 2.4622e−04

10− 8 9.5028e−01 9.0287e−01 8.1506e−01 6.6455e−01 4.4341e−01 2.0299e−01

10− 10 9.9491e−01 9.8983e−01 9.7975e−01 9.5989e−01 9.2137e−01 8.4894e−01

10− 12 9.9949e−01 9.9898e−01 9.9796e−01 9.9591e−01 9.9184e−01 9.8375e−01

10− 16 9.9999e−01 9.9999e−01 9.9998e−01 9.9996e−01 9.9992e−01 9.9984e−01

Table 2 Computed maximum absolute errors for Example 1 by the proposed method on piecewise mesh

ε ↓ N → 64 128 256 512 1024 2048

α = 1
12
, β = 5

12

10− 3 2.9485e−04 2.0460e−05 1.3407e−06 8.5692e−08 5.4143e−09 3.4022e−10

10− 4 3.2535e−04 4.1312e−05 4.6331e−06 4.7689e−07 4.6128e−08 4.2567e−09

10− 6 3.1203e−04 4.7604e−05 4.6331e−06 1.2766e−06 1.3469e−07 1.0771e−08

10− 8 3.1070e−04 6.2649e−05 8.7563e−06 3.4607e−06 7.6676e−07 1.5275e−07

10− 10 3.1057e−04 6.4374e−05 1.4857e−05 3.8392e−06 9.4147e−07 2.2909e−07

10− 12 3.1055e−04 6.4549e−05 1.5662e−05 3.8792e−06 9.6101e−07 2.3864e−07

10− 16 3.1055e−04 6.4568e−05 1.5754e−05 3.8836e−06 9.6318e−07 2.3971e−07

α = 1
3
, β = 1

6

10− 3 1.6639e−02 4.5091e−03 1.1885e−03 3.0595e−04 7.7666e−05 1.9568e−05

10− 4 1.7402e−02 6.3386e−03 2.1634e−03 7.0684e−04 2.2270e−04 6.8177e−05

10− 6 1.6980e−02 6.1878e−03 2.1102e−03 6.8962e−04 2.1718e−04 6.6467e−05

10− 8 1.6941e−02 6.1728e−03 2.1049e−03 6.8790e−04 2.1663e−04 6.6296e−05

10− 10 1.6936e−02 6.1713e−03 2.1043e−03 6.8772e−04 2.1658e−04 6.6279e−05

10− 12 1.6936e−02 6.1711e−03 2.1043e−03 6.8771e−04 2.1657e−04 6.6277e−05

10− 16 1.6936e−02 6.1711e−03 2.1043e−03 6.8771e−04 2.1657e−04 6.6277e−05



Page 11 of 14Esayas Ayele et al. BMC Research Notes           (2025) 18:86  

With the source function is f (x) = − 4
(1+x)4

[(1+
√
ε(1+ x)+ 4π2ε) cos( 4πx1+x )

−2πε(1+ x) sin( 4πx1+x )+ 3(1+
√
ε(1+ x)) e

−1√
ε

1−e
−1√
ε

].

The mixed boundary conditions are chosen in a way, 
such that the exact solution for this problem becomes

y(x) = − cos( 4πx1+x )+ 3 e
−2x

(1+x)
√
ε −e

−1√
ε

1−e
−1√
ε

.

Example 3 Consider the singularly perturbed problem 
[15]











































−εy′′(x)+
4(1+

√
ε(1+ x))

(1+ x)4
y(x) = f (x), 0 < x < 1,

y(0)−
√
εy′(0) = 2+

6

1− e
−1√
ε

,

y(1)+
√
εy′(1) =

−2− e
−1√
ε

2(1− e
−1√
ε )

,

Table 3 Computed maximum absolute errors for Example 2 by the proposed method

ε ↓ N → 64 128 256 512 1024 2048

α = 1
12
, β = 5

12

10− 1 2.2525e−05 1.9012e−06 1.8025e−07 1.8949e−08 2.1447e−09 2.5399e−10

10− 3 1.6510e−03 2.1045e−04 2.3558e−05 2.4019e−06 2.2735e−07 2.0083e−08

10− 6 1.2543e−03 1.7671e−04 3.8181e−05 7.3433e−06 1.1485e−06 1.4224e−07

10− 9 1.2425e−03 1.9312e−04 4.6931e−05 1.1473e−05 2.7969e−06 6.7217e−07

10− 12 1.2421e−03 1.9369e−04 4.7250e−05 1.1645e−05 2.8866e−06 7.1764e−07

α = 1
3
, β = 1

6

10− 1 1.1943e−02 2.9936e−03 7.4887e−04 1.8727e−04 4.6820e−05 1.1705e−05

10− 3 6.3931e−02 2.3480e−02 8.2158e−03 2.7294e−03 8.6616e−04 2.6643e−04

10− 6 5.6933e−02 2.0894e−02 8.4326e−03 2.4112e−03 7.6410e−04 2.3476e−04

10− 9 5.6713e−02 2.0813e−02 7.2498e−03 2.4013e−03 7.6092e−04 2.3378e−04

10− 12 5.6706e−02 2.0811e−02 7.2489e−03 2.4010e−03 7.6082e−04 2.3375e−04

Table 4 Computed maximum order of convergence for 
Example 2 by the proposed method

ε ↓ N → 64 128 256 512 1024

α = 1
12
, β = 5

12

10− 1 3.5665 3.3988 3.2498 3.1433 3.0779

10− 3 2.9718 3.1592 3.2940 3.4012 3.5009

10− 6 2.8274 2.2105 2.3784 2.6767 3.0134

10− 9 2.6857 2.0409 2.0323 2.0363 2.0569

10− 12 2.6810 2.0354 2.0206 2.0123 2.0080

α = 1
3
, β = 1

6

10− 1 1.9962 1.9991 1.9996 1.9999 2.0000

10− 3 1.4451 1.5150 1.5898 1.6559 1.7009

10− 6 1.4462 1.3090 1.8062 1.6579 1.7026

10− 9 1.4462 1.5215 1.5941 1.6580 1.7026

10− 12 1.4462 1.5215 1.5941 1.6580 1.7026

Table 5 Comparison of maximum absolute errors and orders of convergence for Example 2, on the set for ε ∈ S =
{

2−2, ... , 2− 40
}

N → 64 128 256 512 1024 2048 4096

Present method

E
N 1.2421e−03 1.9369e−04 4.7251e−05 1.1645e−05 2.8868e−06 7.1771e−07 1.7860e−07

R
N 2.6810 2.0353 2.0206 2.0122 2.0080 2.0067 –

Result in ref. [16]

E
N 5.0900e−03 1.2696e−03 3.1841e−04 8.0216e−5 2.0094e−05 5.0358e−6 1.2601e−06

R
N 2.0033 1.9954 1.9889 1.9971 1.9965 1.9987 –
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The exact solution that satisfies the given boundary 
conditions is given by

Example 4  Consider singularly perturbed problem 
[16]







































−εy′′(x)+ y(x) = − cos2(πx) = 2επ2 cos(2πx), 0 < x < 1,

y(0)− 2
√
εy′(0) = 2−

4e
−1√
ε

1+ e
−1√
ε

,

y(1)+ 3
√
εy′(1) =

3(1− e
−1√
ε )

1+ e
−1√
ε

.

y(x) =
e
−(1−x)√

ε + e
−x√
ε

1+ e
−1√
ε

− cos2(πx)

As the exact solution for the Example 4 is not avail-
able, so the accuracy of its numerical solution will be 
computed using double mesh principle (Figs.  1, 2 and 
Tables 1, 2, 3, 4, 5, 6, 7).        

Conclusion
In conclusion, this paper presents a novel family of 
non-polynomial cubic spline approximation meth-
ods for solving singularly perturbed reaction–diffu-
sion problems with Robin-type boundary conditions. 
By utilizing piecewise mesh lengths, this approach 
effectively addresses the challenge posed by boundary 











−εy′′(x)+ y(x) = − cos2(πx)− 2επ2 cos(2πx), x ∈ (0, 1)

y(0)− 2
√
εy′(0) = 1,

y(1)+ 3
√
εy′(1) = 0.

Table 6 Comparison of maximum absolute errors and orders of convergence for Example 3

ε ↓ N → 64 128 256 512 1024 2048

Present method

10− 1 1.5804e−07 9.5736e−09 6.0110e−10 3.8343e−11 2.4281e−12 1.7421e−13

4.0101 3.9934 3.9706 3.9811 3.8009

10− 2 4.4426e−06 2.8574e−07 1.8107e−08 1.1394e−09 7.1458e−11 4.4797e−12

3.9586 3.9801 3.9902 3.9950 3.9956

10− 3 3.8440e−04 2.6622e−05 1.7427e−06 1.1132e−07 7.0321e−09 4.4198e−10

3.8519 3.9332 3.9685 3.9846 3.9919

10− 4 4.6569e−04 5.9110e−05 6.6270e−06 6.8198e−07 1.0174e−07 2.3644e−08

2.9779 3.1570 3.2806 2.7448 2.1053

Result in ref. [15]

10− 1 3.208e−04 7.957e−05 2.005e−05 5.007e−06 1.252e−06 3.131e−07

2.01 1.99 2.00 2.00 2.00

10− 2 4.066e−04 1.017e−04 2.544e−05 6.359e−06 1.590e−06 3.975e−07

2.00 2.00 2.00 2.00 2.00

10− 3 3.998e−04 1.003e−04 2.509e−05 6.274e−06 1.569e−06 3.922e−07

1.99 2.00 2.00 2.00 2.00

10− 4 3.859e−04 9.938e−05 2.504e−05 6.271e−06 1.568e−06 3.922e−07

1.96 1.99 2.00 2.00 2.00

Table 7 Comparison of maximum absolute errors and orders of convergence for Example 4, on the set for ε ∈ S =
{

2−2, ... , 2− 40
}

N → 64 128 256 512 1024 2048 4096

Present Method

E
N 2.5673e−04 3.2707e−05 3.6738e−06 3.7844e−07 7.4034e−08 3.6837e−08 9.1670e−09

R
N 2.9726 3.1543 3.2791 2.3538 1.0070 2.0066 –

Result in ref. [16]

E
N 8.3652e−04 1.9349e−04 4.6383e−05 1.1343e−05 2.8032e−06 6.9671e−07 1.7369e−07

R
N 2.1122 2.0606 2.0319 2.0166 2.0085 2.0040 –
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layers, resulting in a numerical scheme of either sec-
ond- or fourth-order convergence. Through the trans-
formation of boundary conditions into a fourth-order 
finite difference scheme and the construction of a tri-
diagonal system, the method achieves stability and 
consistency, ensuring convergence. The diagonally 
dominant nature of the coefficient matrix allows for 
efficient solution using Gaussian elimination, high-
lighting the method’s computational effectiveness.

The numerical results further emphasize the advan-
tages of this method, particularly in handling the small 
positive perturbation parameter that compromises accu-
racy on a uniform mesh. When applied to a piecewise 
mesh, finer discretization’s in the boundary layer and 
coarser sizes in the outer region significantly improve 
accuracy, as demonstrated by numerical illustrations. 
The decrease in maximum absolute error with increasing 
mesh points substantiates the method’s convergence. The 
proposed cubic spline approach outperforms existing 
methods in terms of accuracy and convergence, closely 
approximating the exact solution with fewer errors. 
Overall, this method offers a highly accurate and efficient 
solution for Robin-type singularly perturbed problems, 
aligning well with theoretical predictions.

Limitations
Various approaches can be applied for the finite differ-
ence approximation of differential equations and bound-
ary conditions. However, these differing methods may 
introduce inaccuracies when applied to the specific prob-
lem at hand.
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