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Abstract

Objective The main purpose of this work is to present cubic non-polynomial spline approximation method for solv-
ing Robin-type singularly perturbed reaction—diffusion problems.

Results The solution domain is first discretized using a piecewise mesh. The process begins by defining the cubic
non-polynomial spline function and calculating its derivatives. These derivatives are then transformed into differ-
ence approximations, forming a linear system of algebraic equations in the form of a three-term recurrence relation,
which is solved using an elimination algorithm. The stability and consistency of the method are analyzed, ensuring
convergence. Numerical model examples are used to validate the proposed method, and the results are compared
with those from other methods found in the literature. The maximum absolute error and the order of convergence
for each example demonstrate the effectiveness and core contribution of the method.
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Introduction

Mathematically modeled problems involve constructing
a set of equations that consistently describe the charac-
teristics or behavior of a physical system. Differential
equations are often used to model various physical phe-
nomena, where specific conditions are defined for the
problem being studied [1]. A singularly perturbed differ-
ential equation arises when the highest order derivative is
multiplied by a small positive parameter, called the per-
turbation parameter. These types of equations frequently
appear in various fields of applied mathematics and engi-
neering, including fluid mechanics, elasticity, quantum
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mechanics, chemical-reactor theory, aerodynamics,
plasma dynamics, oceanography, meteorology, and the
modeling of semiconductor devices [2-5].

The importance of these problems in real-world appli-
cations underscores the need for effective numerical
methods to approximate their solutions. Numerical
methods provide a practical approach when exact ana-
lytical solutions are either impossible or too complex to
derive [2]. Among these, finite-difference methods are
widely used for solving differential equations by approxi-
mating derivatives with finite differences. These methods
transform differential equations into a system of algebraic
equations that can be solved using iterative techniques.

Singularly perturbed problems are broadly categorized
into reaction—diffusion and convection—diffusion types.
As the perturbation parameter approaches zero, the order
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of the differential equation reduces by one or two [6-9].
These problems can also be classified based on boundary
conditions, such as Dirichlet, Robin, or mixed conditions.
In particular, second-order singularly perturbed reaction—
diffusion problems with Robin boundary conditions exhibit
boundary layers on both the left and right sides. This study
focuses on the numerical solution of linear, second-order,
singularly perturbed reaction—diffusion ordinary differen-
tial equations with Robin-type boundary conditions.

The challenge in solving singularly perturbed problems
lies in the fact that the solution may vary rapidly in some
parts of the domain and slowly in others, depending on the
perturbation parameter [7, 8]. Standard numerical meth-
ods often fail to provide accurate results for these prob-
lems, especially as the perturbation parameter approaches
zero. Therefore, it is crucial to develop numerical methods
that are uniformly convergent and unaffected by the per-
turbation parameter. This study aims to develop such a
method for Robin-type singularly perturbed reaction—dif-
fusion problems.

Several numerical methods have been proposed in the lit-
erature for solving singularly perturbed reaction—diffusion
problems [2, 5, 10-14], with many focusing on Dirichlet
boundary conditions. However, more recent studies have
addressed Robin-type boundary conditions [15-18], intro-
ducing higher-order finite difference methods for these
problems. Also, the novel numerical methods, along with
a detailed continuous solution analysis, are presented in
ref. [15, 27, 28]. Despite these advances, there is still room
for improvement in terms of the accuracy and convergence
rates of the numerical solutions. Thus, the main objective
of this work is to develop a higher-order, uniformly conver-
gent numerical method for solving Robin-type singularly
perturbed reaction—diffusion problems, along with a theo-
retical error analysis and numerical validation.

Description of the method
This paper deals with the Robin type singularly perturbed
reaction diffusion problem of the form:

Ly(x) = — ¢y (x) + b(x)y(x) = f(x), 0 < x < 1,
B1y(0) =aoy(0) — a1+/y'(0) = n1,

Bry(1) =doy(1) + di+/ey' (1) = na,

(1)
where 0 < ¢ << 1is the singular perturbation parameter,
and ag, a1, do, d1, no, n1 with ay, di # 0 are given con-
stants. The main purpose of this condition is to ensure
the applicability of Robin-type boundary conditions. If
this condition is not fulfilled, the problem shifts to a form
with Dirichlet boundary conditions, which are more
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widely addressed by existing methods in the literature.
The differential operators are denoted by L, By, Bg.

The functions b(x) and the source f(x) function are
assume to be sufficiently smooth functions such that
b(x) > by > 0, Vx € [0, 1]. Also, assume that the given
constant values given in robin type boundary condi-
tions satisfy aj, di >0 and a;j+ d4; >0, j=0,1
Then, the problem in Eq. (1) has a unique solution
y(x) € C2(0, 1) N C1[0, 1] that typically exhibits bound-
ary layers both at x = 0 and x = 1 when the perturbation
parameter sufficiently small. The detailed proofs of the
existence and uniqueness of the continuous solution for
this defined problem is provided in ref. [15].

Piecewise mesh generation

We construct a piecewise mesh that contains more num-
ber of nodal points in the layer regions than non-layer
region. The domain [0,1], N >4 for N is even mul-
tiple integer of 4, is divided into three subintervals,
[0,7], [t,1 —t], [1 — 7,1] where the chosen transition
parameter,

7 = min {i, 2ﬁln(N)}, )
denotes the width of the boundary layers. The domain
[0, 11V is obtained by putting a non-uniform mesh with %
mesh elements in both the layer intervals and a uniform
mesh with % mesh elements in the outer layer region.

A general piecewise mesh
[0, 11N = {0 = x0, %1, %2, .., xx = 1} with step size will be
defined:

4t N
—,i=12,..,—
N 4
2(1 — 27) N 3N
h. =X Xi—1 = ’ —_ 1) T T
i i i—1 N 4 + 4
4t 3N Y1.N
— = — 5 eeer
N 4
3)

Formulation of the method (cubic non-polynomial
spline approximation)

Now, in order to develop the non-polynomial cubic
spline approximation for the problems in Eq. (1), the
interval [0, 1] is divided into N sub-intervals. Let y(x;)
be the exact solution to the problem in Eq. (1), and
y; be an approximation to y(x;), obtained by the seg-
ment S(x) of the spline function passing through the
points (x;, y;) and (xj+1, yi+1). Also, let us consider the
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non-polynomial cubic spline function S(x) in subinterval S@) = i S'(x;) = m;, " (x;) = M;,

[xi, xiy1), i=1, ..., N — 1, of the form:

S@wiv1) =¥ir1, S Xix1) = mig1, §"(@xip1) = Miy1,

5
S@) =¢i + dix — x) + (€@ — g7 ®)

+ Vi(ew(x—xi) + e—w(x—x,')) (4)

Differentiating Eq. (4) successively, we get:

S/(x) =dl' + wui(ew(x—xi) + e—a)(x—x,-))

where, ¢;, d;, u;, and v; are unknown coefficients to be

(o (=)
determined, and w is a free parameter, which is used to + wvi(e" T —
raise the accuracy of the method.
To determine the unknown coefficient in Eq. (4), let us §" (%) =w2u;(e?* %) — ¢
denote: % o
+a)2vi(ew(x Xi) +e w(x x,)) (7)

Using relations in Egs. (5) and (7), we have:that results

S"(x;) = w2ui(ew(xﬁxi) _ e*w(xi*xi)) + wzvi(ew(xi*xi) + e*w(xi*xi)) = M;
=’u;(1-1) +*>vi(1+1) = M;
= 26021/1' =M;

A ®
Vi = .
T 2w?
Again, using the relation in Egs. (5), (8) into Eq. (4) at the
point x;, yields:and it gives

S(i) = ¢i + dix; — x;) + ui(e? T — g @CITH)Y 4y (g0 (i) T (imH)y — g,
=ci+u(l-1D+vil+1 =y
=c¢ +2vi=y;

M;
i =Yi— ol 9)

Using the relation in Egs. (5), (7) at the point x;; and let-
ting 6y = wh; 1, we have:

S”(xi+1) — w2ui(ew(xi+1*xi) _ e*w(le*xi)) + wZVL,(ch(xeri) + e*w(xiﬂfxi)) = M

a)zui(ewhi“ _ e*whm) + wZVi(ewhiH + e*“’hiJrl) = M

_ . M1
wi(e” — e™) + vi(e” 4+ o) = THL
w
Mt M,
ui(e” —e ") = = —vi(e” +e7?), But, vi = ——
1) 2w
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It gives
- Mit1 M; (" +e7™) 10
T 2 — e ) 202 (e — e 2) (10)
Also, using the relation in Egs. (5), Eq. (4) at the point
x;+1 and for 0y = wh; 4, we get:this results
Sit1) = ¢i + di(xip1 — x;) + ui(ew(xi+1_xi) _ _a)(xl+l_xl)) +v; (ew(xz+1_xz) 4 e~ @it xz)) = yin1
= . (e@hiv1 _ ,—ohin (e®hir1 —hip
Yit1 =C; + dtht—‘rl + ui(e e ) +vi(e +e )
yir1 = i+ dihip1 + wi(€” — ) +vi(e” + ™)
M; M1 M; _ M; _
Yirt =y i+ o = (e e ™) (e e ™)
w w 2w
M, — M;
Yir1 = ¥i = dibi + ———5—
w
i1 — Vi M 1 _M
d; = Yi+ Yi My . i (11)
hiv1 hiyiw
= bvi— i
Using the continuity condition of the first derivative at T,
xi, S _ (%) = S\ (%), we obtain: Moy = bi_1yi-1—fi-1 (14)
= 2 e
di—1 + oui_1 (e +e ™) ¢
PR M bit1yi+1 — fit1
—wvi_1(e" —e ) =d; + 2wu; (12) i+l = o

Reducing indices of Egs. (10) and (11) by one and sub-
stltutmg into Eq. (12), and after multiplying both sides by
e +h1+1 and due to the parameters
01 = wh;, and 0y = wh;;1, we have the parameter

— 6it6 .
W = i SO that we get:

2 [yir1—yi Vi _yil}
hi+hipr | hia h;

=aM;—1+2BM; + oMt (13)

where the coefficients are denoted by:

Thus, substituting Eq. (14) into Eq. (13) and also rear-
ranging yields the finite difference scheme that re-written
in three term recurrence relations:

Eyi1+Fyi+Gyi1=H, i=12.,N-1
(15)

where,

2 < 1
o =
hi 4+ hiy1 \ hijw?

e e\ 2 1 2
weh —e) ) hi+hig \hipo? w2 —e %))’

PR € +e™) (™ +e ™  hithin
hi 4+ hip1 \ o —e=®) — w(e® —e=%)  hihip0?
As6; — 0, 6, — 0in Eq. (13), we get the sum of the —2¢ %
two constants, o + 8 = % and their values will be deter-  £i = hi(hi + hiv1) +abi-1, Fi= i +2pbi,
mined from local truncation error. _2e
Considering the second order differential equation Gi = —————— +abis, H; = afi—1 + 2Bfi + affit1.

in Eq. (1) at the nodal point x; and using the relation in
Eq. (5), corresponding to M; = y; = S”(x) which yields:

hiv1(hi + hig1)



Esayas Ayele et al. BMC Research Notes (2025) 18:86

Truncation error (To determine the values

of @ and p)

For the formulated cubic spline method, the truncation
error is obtained from Eq. (13) as:

_ 2 Yit1 — Vi
hi+hiyr | hin
—(aM;—1 + 2BM; + aM;i1)

Vi
h;

(16)

From the relation in Eq. (5) and by expanding Eq. (16)
in Taylor’s series about x;, we have the simplified trunca-
tion error:
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and similarly,
g =
This yields the second order and fourth order convergent
respectively.

Boundary conditions (end conditions)
For i = 0, at x9 = 0, we have the discretized form of the
first boundary condition, Bz y(0) as

(17)
_ 1 1 " 2 h?+1 + h13 Q2 2 (4)
Ti=0~-2a+B)y; + (hiy1 — hi){3 —a .y + It I 2 -5 (hi+1 + hi) ¥+
2 Hia —hE\ oo 3\ . 2 Mo +h\ o, WG
{hi +hip1 ( 5! - g(hiﬂ - hi) it hi + hiya 6! 4 (hiﬂ * hi) Vi H
aoyo — a1v/eyo = m (18)

In order to obtain the higher order method, and for suf-
ficiently cases of the mesh lengths, we choose the value of
o and B as:

In order to formulate the finite difference approxima-
tion to Eq. (18), adapting the Taylor series expansion,

o + :8 = 1 / hzz—i-l " h?—i—l " h?—i—l (4)
X a:}ﬂ:7 Vi1 =Yi + hiy1y; + 5 ¥+ TRL + L
% —a=0. 3 N B 5 n Wi 6 n
510 T e i T
(19)
2 B +h\ e, 2 2 by + 1
- - f(h« h) — 1 TR 7(h.2 h?)
hi + hiq ( 4! 5 it T hy 4+ hiq 4! 6 Vit T
3 3
L) AR (hz +h2)
6 | \ 2(hit1 + hy) SR

1 { Wy + 1 = 2003, + ikl + i} + ) }
6 2(hiy1 + hy)

_1{ —h}y ) = 2hilty = 2high} = h) }
6 2(hj+1 + hy)

< (h} +hiyy)
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Considering Eq. (19) at the nodal point xp, to approxi-
mation the first derivative in boundary condition, we
obtain

h 1 h% 7 hl (4)

Y1 —%o
n —?J’O S!yo - J/o

+ TBy,
(20)

where the local truncation error for the left boundary
condition is.

Yo =

5 K (6
18, =~y — ) + .

Differentiating the second order differential equation
Eq. (1) twice with respect to the independent variable
and considering it at the discretized points, we obtain

" biyi — fi
! P
by, + b/ _ g
y;// — lyl . f , (21)
y@) — blyz + 2btyz b;/yl' _fi//
; .

&

Hence, from Eq. (21) the values of yj, g , yé4),

obtained at the nodal point x as:

yy = 20,

€
bovs + blyo — !
yg}) boygy + 2byyo + boyo —Jfy'
e

Substituting Eq. (22) into Eq. (20) and rearranging
yields

1 hzb/ hah// thO I
- {Bh gy

1 1 Kb
I }yo + s{ e T
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Similarly, for i = N, at xx, we have the discretized form
of the second boundary condition, Bry(1) as

doyn + div/eyy = 2. (25)

At any nodal point x;, the Taylors’ series expansion writ-
ten as

2 3
o B ki @ h, (4>+h, yO 4

73/1 31 i yl 5171 671
(26)

Then, adapting this expansion for the nodal point xx;, to
approximation the first derivative in the second boundary
condition, we get:

Yie1 =i — hiy; +

h 2, 1,
TNng 3 DN+ yﬁ“rTBR,

(27)
where the local truncation error for the second boundary

condition is

TBy = "y + +.

Similar to Eq. (22), from Eq (21) at the nodal point xy,
considering the values of y3,, ¥/ , yﬁ), and also substitut-

ing it into Eq. (27), we get:

/ YN —JN-1
IN = h
N

hN y(6)

h1 h? 17"
}fO 3'5 0 4160

Yo = (23)
o Wby | 2h3b,
I+ 3'50 + 41!50
Hence, for i = 0, substituting Eq. (23) into Eq. (20), we
get the scheme:
h2b0 23! th/ th// by h3b0 h1 1 ah/E
1 1 1%0 1% | Po (1 _
[ao< + 3le + 4lg +aive 4le + e\ 4lg ot n o n 7 24)

h2bg 2h3b’ hibo
=m|1+ 2=
771( + 3le + 4le >+ f{ {4'8

hn n o,
2 }fo 3'8f0

h% 4
4170 (-
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_ h2 b h3 b hnh h3 b2 h h b h2 4 th//
ot { - By Bl gy By (e By 0 B - B 08
/
IN = 2by 2K
N
1+ 3'3 T Tl
Now, substituting this value of y), in Eq. (28) into Eq. (25)
gives the scheme
—di/e Wby 2h3,b) 1 by DY hnby W3 bY
_ dol 1 — d — =
hn IN-1+ 0( + 3le 4le +die hn 3le + 4le + 2¢ + a2 ) PN
(29)

Wby 203D
_ 1 N _ “"NYN
772( + 3le 4le

3 3 rn
>+d1¢z<’;{j )fN /eI NfN WS

412

To conclude formulation of the method, the three equa-
tions in Egs. (15), (24) and (29) constitute the system of
(N + 1) x (N + 1) linear algebraic equations, that give the
approximations yp, y1, ... , yn of the solution y(x) at the
nodal points,xg, %1, ... , xn, with piecewise mesh length
h;. This can be re-written in matrix form

MY =R, (30)
where the three matrices are defined

[Bog Co O cee 0

) . Y0 Hy

A1 B g : n Hy

M= mi)N+D)xN+D) = | o .. . el o | Y = c |, R= :
. YN-1 Hn-1

: v An-1 Bn-1 Oy YN Hy

L0 -~ O ANy By |

’

with the specific entries are denoting:

h2b0 213b) 2! Wb by h?’bo n 1
For i =0, By— 14 Mo 1% 1% 1% | bo [ m a8 ’
or i=0, By %<_%m8+-ﬁ8 tavel 52+ 0T o e T o

a1/
- )

Wby 213D, 1( h3bhg h? W3
Hy = 14 179 4 27170 (22 1 Zien b
0 771( + 3le + 4le +are e\ 4le fO 3le 0 4170
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Fori=1, .., N—1: A, =E;, B, =F,

—di\/e

For i=N: Ax= ,
or i N I

3le 4le

Wb 20131,
BN=do<1+ NTN _ 2N N)-i-dlx/E(

by 2, o Wb 1A, B
Hy ='72(1+ g[!gN T N) +d1~/g<N+ N N)fN_dI\/E g['j;N +dive Nva.

4le

C = G,
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and H; = ofi_1 + 28f; + ofit1.

i hjz\[b;\[ hzgva[ hnbyn

hn 3le 4l 2¢e

b
4182 )’

2e 41g2 4le

Algorithm and its stability

The obtained finite difference approximation yields an
(N + 1) x (N + 1) algebraic tri-diagonal system that can
be solved by Gaussian elimination method. Hence, in using
this method, we have the algorithm:

Theorem 1: (Stability) Let M be a coefficient matrix of
the tri-diagonal system, in Eq. (30). Then, the matrix M
is an irreducible and diagonally dominant matrix and
hence the scheme is stable [26].

C
Wo = =,
By
R
To = EO,
Forward Elimination — 0 C
mzilt l=172) ;N+17
B — AW
R, —A;T;_
p= Ll 19, L, N+ L
B —A;Wi

Setting Cy =0,
Backward Elimination — YN+1 = IN+1,

¥i =T — Wiyit1,

i=N,N—-1, .. 2, 1.

08
- — =103
06 — =10
=10
0.4 {
02

0

0 01 02 03 04 05 06 07 08 09 1
X.
1
Fig. 1 Effects of perturbation parameter on the solution for Example
1 when, N = 64

Proof To estimate the stability of the formulated
method, we show that the coefficient matrix of the
method satisfy the diagonal dominance. First, to check
this, consider that b(x) > by > 0, Vx € [0, 1] and for
i=1, .., N—1,from Eq. (16), we have:
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B > Ai+C, (F; = Ei+Gy), i=1,2, ..,N—-1,
2e —2¢& —2¢€
+28b; > ———— 4abi +——————— +abiy,
hihiiq pbi hi(hi + hit1) =t hig1(hi + hiy1) o
2 +28by > T2 L aby + —2¢ +ab
0o > —————+aby + ——— + aby,
hihiyy hi(hi + hiz1) hip1(hi + hit1)
2e n 5b —2¢ n by
— > — 4+ —.
hihit1 6 hihipyn 12

Second, we consider the Robin boundary conditions at
the two extremitiesi = Oand i = N.

For i=0, By > Cy,
h3bo

213D H2b,
By — 1 1% 1%
0 a0< + 3le + 4lg )+a1\/g< 3le +

e 4lg 2

WY, b (Wbo h 1
41‘80+°<1°+1>+>, Co= —VE,

For i=N: By > Apn,
—di/e Wby 203Dy 1 Kby mYbY,  hnby  HybY,
An = , By =do| 1 - d - .
N hn N 0 < + 3le 4le +dive hn 3le + 4le 2¢ 412
Thus, this implies that for each row of M, the sum of the
two off-diagonal elements is less than or equal to the mod-
ulus of the diagonal element. Therefore, M is diagonally —&y" (@) + A +x(1—x)yx) =fx), 0<x<l,

dominant. Hence, M is irreducible matrix. Henceforth, the
Thomas Algorithm (Solution of general Tri-diagonal system)
or Gaussian elimination method for solving the formulated
scheme in Eq. (30) is stable for the described method.

Numerical examples and results
In order to test the validity of the proposed method and to
demonstrate their convergence computationally, we have
taken different model examples. The maximum absolute
error is evaluated by:

EN =

e max

x;€[0,11N

ly(xi) — yil,

where y(x;) and y; respectively, denotes the exact and
approximate solutions. Further, the order of convergence
calculated by the formula:

_ log(EN) — log(EXN)
B log(2)

Example 1 Consider the singularly perturbed problem
[15]

9(0) — V&Y (0) = —1 — /& + e,
YD)+ Vay 1) = —1— /e + e

The source function is given by

f@) =14x(1—x) +[2V5 - (1 - 0)|e e
~(1-n)
+[2Ve —x2(1 —x)le V7 .
The exact solution to the problem that satisfies the
above boundary conditions is given by.

—x —(-x)
yx) =14 (x — 1eve —xe ¢ .

Example 2 Consider the singularly perturbed problem
(16]
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Approximate Solution by 2nd Order cubic spline
—O— Approximate Solution by 4th Order cubic spline
—¥— Exact Solution

0.4

0.2r
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Approximation Solution by 2nd cubic spline
—6— Approximation Solution by 4th cubic spline 4
—*— Exact Solution

0.1 0.2 03 04 05 06

Fig. 2 Numerical solution versus exact solution for Examples 2 and 3 respectively, when N = 64, & = 10~4

Table 1 Computed maximum absolute errors for Example 1 by the proposed method on uniform mesh when o = 11—2 B =

2
2

el N— 64 128 256 512 1024 2048

10—3 2.9485e—-04 2.0460e—-05 1.3407e-06 8.5692e—-08 54143e—-09 3.4022e-10
10—4 1.5204e-02 1.4654e—-03 1.0970e—-04 7.4149e—-06 4.8043e-07 3.0548e—-08
10=6 6.0163e-01 3.6419e-01 1.4058e-01 2.8215e-02 3.1066e—03 24622e—-04
10—8 9.5028e-01 9.0287e-01 8.1506e-01 6.6455e-01 44341e-01 2.0299e—-01
1010 9.9491e-01 9.8983e—01 9.7975e-01 9.5989%e-01 9.2137e-01 84894e—01
10~ 12 9.9949e-01 9.9898e—01 9.9796e-01 9.9591e-01 9.9184e—-01 9.8375e—01
1016 9.9999e-01 9.9999e-01 9.9998e-01 9.9996e-01 9.9992e—01 9.9984e—01
Table 2 Computed maximum absolute errors for Example 1 by the proposed method on piecewise mesh

el N— 64 128 256 512 1024 2048
=1 p=17

1073 2.9485e—-04 2.0460e—-05 1.3407e-06 8.5692e—-08 54143e—-09 3.4022e-10
10—4 3.2535e-04 4.1312e-05 4.6331e-06 4.7689e—-07 4.6128e-08 4.2567e-09
10=6 3.1203e-04 4.7604e—-05 4.6331e-06 1.2766e—-06 1.3469e—-07 1.0771e-08
10—8 3.1070e—-04 6.2649e—-05 8.7563e—-06 3.4607e—-06 7.6676e—07 1.5275e-07
1010 3.1057e-04 6.4374e-05 1.4857e—-05 3.8392e—-06 9.4147e-07 2.2909e—-07
10~ 12 3.1055e—-04 6.4549e—-05 1.5662e—-05 3.8792e—-06 9.6101e—07 2.3864e—07
10~ 16 3.1055e-04 6.4568e—-05 1.5754e-05 3.8836e—-06 9.6318e—-07 2.3971e-07
a=3p=}

1073 1.6639e—-02 4.5091e-03 1.1885e-03 3.0595e—-04 7.7666e—05 1.9568e—-05
10— 4 1.7402e-02 6.3386e—-03 2.1634e-03 7.0684e—04 2.2270e—-04 6.8177e-05
10~ 1.6980e—-02 6.1878e—03 2.1102e-03 6.8962e—04 2.1718e—-04 6.6467e—-05
10—8 1.6941e-02 6.1728e—03 2.1049e-03 6.8790e—-04 2.1663e—-04 6.6296e—-05
10— 10 1.6936e-02 6.1713e-03 2.1043e-03 6.8772e—-04 2.1658e—-04 6.6279e-05
10~ 12 1.6936e—-02 6.1711e-03 2.1043e-03 6.8771e-04 2.1657e—-04 6.6277e-05
10~ 16 1.6936e—-02 6.1711e-03 2.1043e-03 6.8771e-04 2.1657e—-04 6.6277e-05
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Table 3 Computed maximum absolute errors for Example 2 by the proposed method

Page 11 of 14

el N—> 64 128 256 512 1024 2048
1 5
a= 13, B = W
107! 2.2525e-05 1.9012e-06 1.8025e—-07 1.8949e—-08 2.1447e—09 2.5399%e-10
10—3 1.6510e—-03 2.1045e-04 2.3558e—-05 2.4019e—-06 2.2735e-07 2.0083e—-08
10—6 1.2543e-03 1.7671e-04 3.8181e-05 7.3433e—06 1.1485e-06 1.4224e-07
10=°9 1.2425e—-03 1.9312e-04 4.6931e-05 1.1473e-05 2.7969%e—-06 6.7217e-07
10~ 12 1.2421e-03 1.9369e—-04 4.7250e—-05 1.1645e-05 2.8866e—06 7.1764e—-07
w=ip=t
10~ 1.1943e-02 2.9936e-03 7.4887e—-04 1.8727e-04 4.6820e—-05 1.1705e-05
10—3 6.3931e-02 2.3480e—-02 8.2158e—-03 2.7294e—03 8.6616e—04 2.6643e—-04
10—6 5.6933e-02 2.0894e—-02 8.4326e—-03 24112e-03 7.6410e—04 2.3476e—-04
10—°9 5.6713e-02 2.0813e-02 7.2498e—03 24013e-03 7.6092e—-04 2.3378e—-04
10~ 12 5.6706e—02 2.0811e-02 7.2489e—03 24010e—-03 7.6082e—04 2.3375e—-04
Table 4 Computed maximum order of convergence for ” 41 + /e(1+x)) _ 0 1
Example 2 by the proposed method —&y (%) + 1+ x)% y) =f@), 0<x<1,
el N—> 64 128 256 512 1024 , 6
J’(O)—x/gy(o)=2+7;1,
1 5 _ 3
a=35 =2 1—eve
107! 3.5665 3.3988 3.2498 3.1433 3.0779 =1
—2—ev*
1073 29718 31592 32940 34012 35009 yD)+ ey (D) = ———-,
10-6 28274 22105 23784 26767 30134 2(1 —eV®)
-9 ) . . _
10 2.6857 2.0409 2.0323 2.0363 2.0569 With the source function is f(x) — (1+;§)4
10— 12 26810 2.0354 2.0206 20123 2.0080
1 [(1+/e(1 +x) + 47%e) cos(%)
a=3 p=35 =
1 . 4 e
10 19962 1.9991 19996 19999 20000 _27e(l4x)sin(¥TE) 4 3(1 + V(1 + ) ],
10-3 14451 15150 15898 16559 17009 The mixed bound di hl—eﬁ
106 | 4460 13090 1 8062 16579 17026 e mixed boundary con 1t10n§ are chosen in a way,
such that the exact solution for this problem becomes
10~9 1.4462 1.5215 1.5941 1.6580 1.7026 ox 1
B 4 A+0VE _o Ve
10-12 14462 15215 1.5941 16580 1.7026 y(x) = — cos(%) +3—=
1—ev®
Example 3 Consider the singularly perturbed problem
[15]
Table 5 Comparison of maximum absolute errors and orders of convergence for Example 2, on the setfore € S = {277, .., 274}
N — 64 128 256 512 1024 2048 4096
Present method
EN 1.2421e-03 1.9369e—-04 4.7251e-05 1.1645e-05 2.8868e—06 7.1771e—=07 1.7860e—-07
RN 26810 2.0353 2.0206 20122 2.0080 2.0067 -
Result in ref. [16]
EN 5.0900e-03 1.2696e—-03 3.1841e-04 8.0216e—5 2.0094e—-05 5.0358e—-6 1.2601e-06
RN 2.0033 1.9954 1.9889 1.9971 1.9965 1.9987 -
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Table 6 Comparison of maximum absolute errors and orders of convergence for Example 3

el N—> 64 128 256 512 1024 2048

Present method

107! 1.5804e—-07 9.5736e—-09 6.0110e—-10 3.8343e—-11 24281e-12 1.7421e-13
40101 3.9934 3.9706 3.9811 3.8009

10=2 4.4426e—-06 2.8574e-07 1.8107e-08 1.1394e-09 7.1458e—11 44797e-12
3.9586 3.9801 3.9902 3.9950 3.9956

10-3 3.8440e—-04 2.6622e—-05 1.7427e-06 1.1132e-07 7.0321e—09 4.4198e-10
3.8519 3.9332 3.9685 3.9846 3.9919

10—4 4.6569e—04 5.9110e-05 6.6270e—-06 6.8198e—-07 1.0174e-07 2.3644e—08
29779 3.1570 3.2806 2.7448 2.1053

Result in ref. [15]

1071 3.208e—04 7.957e-05 2.005e—05 5.007e—-06 1.252e—-06 3.131e-07
2.01 1.99 2.00 2.00 2.00

10~ 2 4.066e—04 1.017e-04 2.544e—05 6.359e—-06 1.590e—-06 3.975e-07
2.00 2.00 2.00 2.00 2.00

10—3 3.998e-04 1.003e-04 2.509e—-05 6.274e—06 1.569e—-06 3.922e-07
1.99 2.00 2.00 2.00 2.00

10—4 3.859e-04 9.938e—-05 2.504e—-05 6.271e—-06 1.568e—06 3.922e-07
1.96 1.99 2.00 2.00 2.00

Table 7 Comparison of maximum absolute errors and orders of convergence for Example 4, on the setfore € S = {277, .., 274}

N — 64 128 256 512 1024 2048 4096

Present Method

EN 2.5673e—-04 3.2707e-05 3.6738e—06 3.7844e—-07 7.4034e—08 3.6837e—08 9.1670e—09

RN 29726 3.1543 3.2791 2.3538 1.0070 2.0066 -

Result in ref. [16]

EN 8.3652e—-04 1.9349e-04 4.6383e—05 1.1343e-05 2.8032e—-06 6.9671e-07 1.7369%e-07

RN 21122 2.0606 2.0319 2.0166 2.0085 2.0040 -

—&y" (%) + y(x) = — cos?(x) = 2em? cos(2wx), 0 <x <1, —&y" (%) + y(x) = — cosz(nx) — 2em? cos(2rx), x € (0,1)

=1

Qe Ve
¥(0) — 245y (0) =2 — ——,

1+eve
-1

3(1—ev)

y() +3/ey' (1) = —_—
1+4ev®

The exact solution that satisfies the given boundary
conditions is given by

(=% —x
Ve Ve
y(x) = % — COS2(7UC)
1+eve
Example 4  Consider singularly perturbed problem

[16]

y(0) = 2/ey'(0) = 1,
y(1) +3ey' (1) = 0.

As the exact solution for the Example 4 is not avail-
able, so the accuracy of its numerical solution will be
computed using double mesh principle (Figs. 1, 2 and
Tables 1, 2, 3, 4, 5, 6, 7).

Conclusion

In conclusion, this paper presents a novel family of
non-polynomial cubic spline approximation meth-
ods for solving singularly perturbed reaction—diffu-
sion problems with Robin-type boundary conditions.
By utilizing piecewise mesh lengths, this approach
effectively addresses the challenge posed by boundary
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layers, resulting in a numerical scheme of either sec-
ond- or fourth-order convergence. Through the trans-
formation of boundary conditions into a fourth-order
finite difference scheme and the construction of a tri-
diagonal system, the method achieves stability and
consistency, ensuring convergence. The diagonally
dominant nature of the coefficient matrix allows for
efficient solution using Gaussian elimination, high-
lighting the method’s computational effectiveness.

The numerical results further emphasize the advan-
tages of this method, particularly in handling the small
positive perturbation parameter that compromises accu-
racy on a uniform mesh. When applied to a piecewise
mesh, finer discretization’s in the boundary layer and
coarser sizes in the outer region significantly improve
accuracy, as demonstrated by numerical illustrations.
The decrease in maximum absolute error with increasing
mesh points substantiates the method’s convergence. The
proposed cubic spline approach outperforms existing
methods in terms of accuracy and convergence, closely
approximating the exact solution with fewer errors.
Overall, this method offers a highly accurate and efficient
solution for Robin-type singularly perturbed problems,
aligning well with theoretical predictions.

Limitations
Various approaches can be applied for the finite differ-
ence approximation of differential equations and bound-
ary conditions. However, these differing methods may
introduce inaccuracies when applied to the specific prob-
lem at hand.
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