
R E S E A R C H  N OT E Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the 
licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit  h t    t p : / / c r e  a   t i 
v e  c  o  m  m  o n s . o r g / l i c e n s e s / b y - n c - n d / 4 . 0 /     .   

Brabec et al. BMC Research Notes           (2025) 18:33 
https://doi.org/10.1186/s13104-025-07115-4

BMC Research Notes

*Correspondence:
Paul A. Constable
Paul.constable@flinders.edu.au
1Institute of Computer Science, Czech Academy of Sciences, Pod 
Vodarenskou Vezi 2, Prague 8 182 00, Czech Republic
2National Institute of Public Health, Srobarova 48, Prague 10  
100 00, Czech Republic
3College of Education, Psychology, and Social Work, Flinders University, 
Adelaide, Australia
4College of Nursing and Health Sciences, Flinders University, Caring 
Futures Institute, Adelaide, Australia

5Behavioural and Brain Sciences Unit, Population Policy and Practice 
Programme, Great Ormond Street Institute of Child Health, University 
College London, University College London, London, UK
6Pattern Recognition Lab, Department of Computer Science, Friedrich-
Alexander-Universitat Erlangen-Nurnberg, 91058 Erlangen, Germany
7VisioMed.AI, Moscow, Russia
8Biomedical Engineering Department, University of Connecticut, Storrs, 
CT 06269, USA
9Tony Kriss Visual Electrophysiology Unit, Clinical and Academic 
Department of Ophthalmology, Great Ormond Street Hospital for 
Children NHS Foundation Trust, London, UK
10Great Ormond Street Institute for Child Health, University College 
London, University College London, London, UK

Abstract
Objective To present a remodeling of the electroretinogram waveform using a covariance matrix to identify 
regions of interest and distinction between a control and attention deficit/hyperactivity disorder (ADHD) group. 
Electroretinograms were recorded in n = 25 ADHD (16 male; age 11.9 ± 2.7 years) and n = 38 (8 male; age 10.4 ± 2.8 
years neurotypical control participants as part of a broad study into the determining if the electroretinogram could 
be a biomarker for ADHD. Flash strengths of 0.6 and 1.2 log cd.s.m− 2 on a white 40 cd.m− 2 background were used. 
Averaged waveforms from each eye and flash strength were analyzed with Bayesian regularization of the covariance 
matrices using 100 equal length time intervals. The eigenvalues of the covariance matrices were ranked for each 
group to indicate the degree of complexity within the regularized waveforms.

Results The correlation matrices indicated less correlation within the waveforms for the ADHD group in time 
intervals beyond 70 msec. The eigenvalue plots suggest more complexity within the ADHD group compared to the 
control group. Consideration of the correlation structure between ERG waveforms from different populations may 
reveal additional features for identifying group differences in clinical populations.
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Introduction
The electroretinogram (ERG) assesses retinal function 
and consists of an initial negative a-wave that is domi-
nated by hyperpolarization of the cone photoreceptors 
with the subsequent positive b-wave formed by contribu-
tions of inner retinal neurons [1–3]. The clinical interpre-
tation of the ERG waveform typically involves measures 
of the amplitudes and time to peaks of the a- and b-waves 
as well as the higher frequency Oscillatory Potentials and 
the Photopic Negative Response (PhNR) [4, 5]. Group 
differences are usually compared using the 95% confi-
dence intervals between groups to compare the differ-
ences between the main peaks and troughs of the ERG [5, 
6]. This re-analysis of group clinical data uses a Bayesian 
remodeling of the ERG time-domain trajectory to offer 
a new perspective on the analysis of the ERG waveform 
by evaluating correlations between regions of the con-
tinuous time series. The ‘trajectory’ is used to denote the 
amplitude change with time as a vector with magnitude 
and direction that varies with the shape of the ERG wave-
form over time.

Analyzing the ERG using signal analysis to decompose 
the waveform with discrete [7–9], continuous wavelet 
transforms [10, 11], Fourier analysis [12] and variable 
frequency complex demodulation [13, 14] have been 
employed to reveal ERG characteristics to inform dis-
ease classification [15, 16]. In addition to these meth-
ods, that decompose the raw ERG signal into different 
frequency or scale contributions, other mathematical 
approaches based on statistical modeling aim to provide 
insights into the shape of the ERG using a registered time 
series to analyze the trajectory of the ERG [17]. This later 
approach drew on aspects of Functional Data Analysis 
(FDA) where the time series data was treated as an ele-
ment in the space of possible functions [18]. Broadly 
speaking, this time-domain analytical approach, which 
is commonly adopted in fields such as economics, bio-
logical signals and meteorology [19] has been neglected 
in ERG studies. The use of traditional stationary points 
such as the peak amplitude at a unique (x, y) co-ordinate 
negates the functional non-stationary y = f(x) properties 
of the waveform’s trajectory.

Building on the principles of FDA [18], this remodel-
ing of the ERG investigated the correlations within the 
regularized ERG waveform using detailed Bayesian 
modeling in the time domain. The ERG waveform was 
treated as the dependent variable with the ADHD/Con-
trol group indicators as explanatory variables to evalu-
ate regions of interest in the ERG waveform shape that 
differed between the groups. This approach allowed 
for a broader analysis of the waveform characteristics 
without relying on a pointwise comparison of the main 
a- and b-wave peaks. This offers the possibility of identi-
fying more subtle differences between clinical groups or 

subtypes by examining the correlations of the functions 
that define the regularized space in the autocorrelation 
function. In this report the main aim was to demonstrate 
the Bayesian remodelling approach using recorded ERGs 
from a control and ADHD group as a exemplar. Classi-
fication between the groups is beyond the scope of this 
preliminary methodological report and will be the focus 
of future work encompassing other neurodevelopmental 
disorders.

The remodeling of the ERG waveforms involved the 
construction of correlation and covariance matrices 
based on uniform divisions of a 100 × 100 matrix through 
the waveform. From the rows of the matrix, the inter-
relationships between data points could be more read-
ily visualized to determine if there were aspects of the 
waveform that varied between the groups. The approach 
presented was based on Bayesian analysis using regu-
larization of the (high dimensional) covariance matri-
ces [20], with posterior estimates of both mean ERG 
time-trajectories and selected features of the covariance 
or correlation matrices. The posterior estimates were 
obtained via Hamiltonian Monte Carlo simulations per-
formed in ‘Stan’ [21]. To elucidate uncertainty, the 95% 
credible intervals for the time-trajectories of ADHD/
Control groups were used to identify the time intervals 
of interest where the credible intervals for the groups did 
not overlap. The idea of the approach is to provide fine 
insight into the correlation structure of ERG signal val-
ues at different time points. This cannot be done directly 
(as the sample size is not large enough to estimate full 
correlation matrix unambiguously). Instead, we employ 
a fully formalized Bayesian regularization approach to 
estimate the covariance structure. This analysis provides 
an example of how a time-domain statistical analysis 
could complement other existing methods which may be 
important, especially when acknowledging prominent 
non-stationarity ERG trajectories and their complicated 
functional shapes.

Methods
Participants
Participants were recruited through social media and 
local community psychiatric services for children and 
adolescents. The sample included n = 25 ADHD (16 male) 
and n = 38 (8 male) typically developing controls with age 
(mean ± SD; range) ADHD (11.9 ± 2.7, 6.2–16.2) and con-
trol (10.4 ± 2.8, 5.0–15.0) years. Individuals with a diagno-
sis of ADHD hyperactive/impulsive (n = 23) or inattentive 
subtype (n = 2) that met DSM-5 [22] diagnostic criteria as 
confirmed by medical report were included in the sam-
ple. Exclusion criteria for both groups included amblyo-
pia, strabismus, retinal dystrophy, epilepsy, refractive 
error > ± 6.00 equivalent spherical refraction, or systemic 
disease that may affect retinal function such as diabetes. 
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For the ADHD group participants were also excluded if 
they had a co-diagnosis of autism spectrum disorder or 
obsessive-compulsive disorder and for the control group 
if there was a family history of a neurological disor-
der such as autism spectrum disorder, schizophrenia or 
bipolar disorder. Participants (n = 10) abstained from any 
medication use 24  h prior to testing with methylpheni-
date that increases dopamine shown to increase the ERG 
amplitude in some individuals [23]. Medications (with 
some in combination- see Supplementary Data sheet for 
details) included methylphenidate (Ritalin or Concerta) 
(n = 8), melatonin (n = 3), dexamphetamine (n = 2), lisdex-
amfetamine (Vyvanse) ( (n = 3), alpha-agonists for hyper-
tension (Clonidine, guanfacine or Catapres) (n = 6), D2 
antagonists (risperidone) (n = 1), and a selective serotonin 
reuptake inhibitor (sertraline) (n = 1). The participants 
dosing regimen varied with symptom severity, but all had 
been using medications for a minimum of six months 
prior to testing. Informed written consent to participate 
was obtained from the parent/guardian prior to testing 
for individuals aged under 16 years of age or from the 
participant if aged greater than 16 years of age.

Electrophysiology
ERG recordings were obtained from flash strengths of 
0.6 and 1.2 log phot cd.s.m− 2 presented to the right then 
left eye of the participant with two replications for each 
eye/strength combination. One representative waveform 
was selected from each eye/strength combination based 
on the quality of the recording (minimal baseline drift 
or noise) for analysis. The white flash was presented at 
2 Hz on a 40 cd.m− 2 white background with 30 averages 
obtained to generate the reported averaged ERG wave-
form with the RETeval (LKC Gaithersburg, MD, USA) 
device. Skin electrodes were used and placed 2–3  mm 
below the lower lid. Pupils were undilated with the RETe-
val automatically adjusting the flash strength to vary with 
pupil diameter in real time. Waveforms were filtered 0.1–
300 Hz and artefacts were automatically rejected if they 
fell outside the upper or lower quartile of the average. For 
further information on the recording methods see Con-
stable et al., (2022) [9].

Dataset is available at the public repository:  h t t  p s : /  / fi   g s  
h a r e . c o m / s / 6 e 3 b 9 3 a 0 8 6 6 2 3 4 c 6 ff  f 4     .  

Statistical analysis
The ERG signal trajectory was modelled in the time-
domain with one functional measurement (ERG profile) 
per combination of participant, eye (Left or Right) and 
for each flash strength (0.6 or 1.2 log cd.s.m− 2). A single 
measurement profile was the set of time (msec) and the 
ERG signal amplitude (µV) values. The reported raw 
times were sampled at 1.95 kHz but had different abso-
lute placements for different measurements from each 

recording which meant that the data from different mea-
surements were not directly comparable for direct analy-
sis and called for a functional approach (typically, there 
was a difference in the reported time between record-
ings of ± 0.01 msec and so there was not an exact match 
between traces in the time domain). The raw average 
waveform data was preprocessed by interpolation to the 
same finely spaced timings for each waveform. This was 
done by fitting a Generalized Additive Model with time 
as the explanatory variable using a thin-plate smoother 
[24] with large k (reduced rank version of the thin plate 
regression spline) in the mgcv package [25] which were 
then evaluated at the same dense mesh for each measure-
ment (100 equal lengths placed time values in the interval 
[-50.24 to 169.34] msec).

The preprocessed functional data were then modelled 
in the Bayesian way with a multivariate t distribution as 
the observation model. The multivariate t was fitted sepa-
rately for the four combinations of eye (Left and Right) 
and flash strength (0.6 or 1.2 log cd.s.m− 2). The multi-
variate t (instead of multivariate normal) was used as a 
precaution against occasional outlying values. To achieve 
robustness against the outliers as a part of the observa-
tional model, a very low degree of freedom (3) was cho-
sen that still allowed for the existence of second moments 
[26].

To model the profile flexibly, a flexible covariance 
matrix was required whose structure was not available 
a priori. A completely free (general positive definitive) 
covariance matrix estimation was not feasible here (with 
4950 entries, it would have required an impractically 
large sample size). Therefore, the ERG profile was regu-
larized [27] using the Lewandowski-Kurowicka-Joe (LKJ) 
distribution [20] prior with the eta parameter equal to 
1 (corresponding to uniform selection from the class of 
legal covariance matrices) for the correlation matrix. This 
choice was motivated by both flexibility and regulariza-
tion with respect to the finite information available in the 
observed data. Other priors (for multivariate mean and 
for the scaled versions of standard deviations) were unin-
formative but proper (normal, respectively half normal 
with large standard deviations).

The Bayesian model was fitted in the probabilistic mod-
elling environment ‘Stan’ [21] using the computationally 
highly effective Hamiltonian Monte Carlo approach. R 
was used for data manipulation and pre-processing with 
the rstan (https://mc-stan.org/rstan/) interface of ‘Stan’. 
The high-dimensional LKJ prior could not be performed 
by a default approach in ‘Stan’, so an onion method was 
used for the implementation  (   h t  t p s  : / / d  i s  c o u  r s e  . m c -  s t  a n .  
o r g  / t / u  s i  n g - t h e - o n i o n - m e t h o d - i n - o c c u p a n c y - h i e r a r c h i c 
a l - m o d e l / 2 4 9 0 1     ) published on ‘Stan Discourse’.

https://figshare.com/s/6e3b93a0866234c6fff4
https://figshare.com/s/6e3b93a0866234c6fff4
https://mc-stan.org/rstan/
https://discourse.mc-stan.org/t/using-the-onion-method-in-occupancy-hierarchical-model/24901
https://discourse.mc-stan.org/t/using-the-onion-method-in-occupancy-hierarchical-model/24901
https://discourse.mc-stan.org/t/using-the-onion-method-in-occupancy-hierarchical-model/24901
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Results
Figure  1 shows the posterior mean and 95% credible 
intervals of the ERGs for the ADHD and typically devel-
oping control groups for each eye at 0.6 and 1.2 log phot 
cd.s.m− 2. The posterior mean is a standard summary of 
posterior distribution obtained as the centerpiece of 
Bayesian inference and not the expected value or arith-
metic mean of an observable quantity. The main dif-
ferences based on non-overlapping regions are at time 
points beyond 70 msec with the control group having a 
more negative waveform profile. The main group differ-
ences appear in the region beyond 70 msec with sepa-
ration of the credible confidence intervals between the 
ADHD and Control groups. See the Additional file 1 
for the posterior mean and confidence intervals for the 
amplitudes of the a- and b-waves and additional plots of 
the correlation and covariance matrices for each group 
and for each eye and flash strength.

Correlation matrix plots for the 100 equal time inter-
vals (See Supplementary Data Sect.  7.1) that spanned 
the measured ERG signal from − 50.24 to 169.34 msec. 
Each time interval corresponds to a row number with for 
example row 37 incorporating data within the time inter-
val (29.60 to 31.82 msec) and row 52 incorporating data 
within the time interval (62.88 to 65.09 msec). Selected 
time intervals that encompassed the region including the 
a-wave (row 29, t = 11.86 to 14.08 msec), b-wave (row 37, 
29.60 to 31.82 msec), PhNR (row 56, 71.75 to 73.97 msec) 
and at row 80, (124.98 to 127.20 msec) where there were 
noticeable group differences based on the 95% credible 
confidence intervals indicated by the red boxed areas in 
Fig. 1. The correlations for these selected rows are shown 
in Fig.  2 where the correlations are greatest closest to 
neighboring time points at adjacent rows. As distance 
from the row increased the correlations between data 
declined. Here it is important to observe the differences 

Fig. 1 Posterior mean ERG trajectory for the Control and ADHD groups together with 95% credible intervals obtained from the Bayesian model. For time 
points beyond 70 msec the Control Groups Waveform is lower than that for the ADHD group with this difference being more pronounced at the 1.2 log 
cd.s.m− 2 strength indicated by the boxed area where there is no overlap of the 95% credible confidence intervals in the right and left eyes
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in how these correlations differ between the groups in 
each row with in general less correlation between data 
points within the ADHD group compared to the Control 
group at time points distant to b-wave in rows 51 and 
80. Figure 2C and G show correlations at time ~ 72 msec, 
the waveform data of the ADHD group preceding this 
time point shows less correlation compared to the Con-
trol group. Similarly for Fig. 2D at t = 124.98 msec there 
is a large difference in the way the data correlates at this 
point with the neighboring data with the ADHD group 
showing weaker correlation within the time series. The 
main discrepancies in the correlations of the time series 
trajectories are highlighted by the boxed regions shown 
in Fig. 2.

Figure 3 illustrates the eigenvalues of the mean poste-
rior correlation matrix of the ERG waveforms data for 
the right and left eyes comparing the ADHD and Con-
trol groups at each flash strength. The decline of the 

eigenvalues is very fast showing a relatively simple cor-
relation structure of the (prior-regularized) correlation 
estimate (with only about 30 eigenvalues dominant). To 
note that whilst the overall shape of the eigenvalue plots 
were similar for both groups, the Control group plot 
tends to be larger than the ADHD group for larger eigen-
values that correspond to simpler, more regular behavior. 
In contrast for the smaller eigenvalues that correspond to 
more complex and less regular behavior the group plots 
demonstrating that the ADHD group tends to feature 
more complex or irregular behavior.

Discussion
This time-domain approach to ERG signal analysis pro-
vides a different perspective to the more traditional 
point-wise comparison of the mean values of ampli-
tude and time to peak of the main features of the ERG 
waveform [5, 6]. In this approach, a comparison of the 

Fig. 2 Mean posterior correlation (y-axis) against the 100 equal length time divisions (x-axis) of the right eye at the two flash strengths of 0.6 (2 A-D) and 
1.2 log phot cd.s.m− 2 (2E-H) for the Control and ADHD groups. Row 29 (A, E) is at the beginning of the time division beginning at (t = 11.9 msec), for the a-
wave with a similar pattern of correlation across the 100-time divisions which was also observed for rows 37 (B, F) at the time interval beginning at t = 29.6 
msec for the b-wave. In contrast for row 56 at time division beginning at 71.7 msec and corresponding to the Photopic Negative Response (PhNR), there 
was less correlation with the preceding time divisions in the ADHD group as indicated by the red boxed areas in Fig. 2C and G. This pattern of a reduced 
time division correlations in ADHD was more prominent at row 80 at time division beginning at 124.9 msec and is indicated by the purple box in 2D for 
the 0.6 log phot cd.s.m− 2 strength. See Additional file 1 for left eye exemplars
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Fig. 3 Ranked eigenvalues of the mean posterior correlation matrices for the right and left eyes of the two groups for each flash strength. Larger eigen-
values are present in the control group in the first few ranks with more frequent higher eigenvalues present in the ADHD group in ranks greater than 50 
indicating a more irregular structure in the correlations for the ADHD group and more irregular behavior of the time series
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correlations of the mean trajectories in the time-domain 
elaborates where the two groups differ most in terms of 
mean magnitude of ERG signal, how smooth the behavior 
of the trajectories is (how much correlated or redundant 
in time sense they are) and whether the (inherently non-
stationary) correlation properties of the ERG signal dif-
fer more in some time regions. Both the posterior mean 
and correlation/covariance behavior differences might 
be of interest in future constructions of e.g. variants of 
quadratic discriminant analysis weighting different time 
regions differently to achieve better classification perfor-
mance [28–30].

The first step in the analysis was to remove the influ-
ence of outliers so that the time-domain features of the 
ERG waveforms could be compared by using time as 
the explanatory variable. This enabled a comparison of 
the regions with overlap and non-overlap in the ERG 
that added additional insights to the group compari-
sons beyond the a- and b-wave maxima and minima. In 
this sample, the most distinguishing features between 
these groups was observed in the time points beyond 70 
msec where retinal ganglion cells influence the shape of 
the ERG [31]. This pattern of differences between these 
groups may support previous work that found greater 
background retinal noise associated with the pattern 
ERG [32].

The main point of comparing the correlations between 
groups is that they depict where the non-stationary or 
variable nature of the ERG trajectories are evident which 
may be used as a potential feature with which to identify 
differences in the ERG’s trajectory between clinical popu-
lations. In this sample, the behavior of the correlations 
between data points varies for each group and for the 
ADHD group the correlation/inter-relationships between 
data points of the ERG are lower than in the Control 
group. These local variations may be used to infer a dif-
ference in the groups and may support classification 
models in larger samples- or help to identify subsets 
within a heterogeneous population. These observations 
serve to illustrate the potential of comparing the degree 
of correlation of time points with those close and far 
given that the shape of the waveform is a dynamic inter-
action arising from the underlying excitatory and inhibi-
tory neural pathways of the retina [1–3, 9].

The eigenvalues of the mean posterior correlations 
explain the main overall multivariate variability which 
declined rapidly in the groups. This means that less of 
the variability was explained by the higher order eigen-
values. There is a crossing (at approximately rank 30) of 
the eigenvalues with the Control group dominating the 
ADHD eigenvalues in the lower order (first ranks) but 
the ADHD group dominating the Control eigenvalues for 
the higher ranks. This hints that the Control group ERG 

has a more regular, less complex nature whilst the ADHD 
group ERG is more complex and more irregular.

Limitations
This report is limited to two flash strengths and two 
groups and a small sample of participants. More detailed 
analyses to ascertain the sensitivity and specificity of the 
group difference based on the differences in the corre-
lation matrices and the eigenvalues compared to stan-
dard stationary markers would support the use of this 
approach. Interpretations of the underlying physiological 
processes involved in the variations between the groups 
with respect their correlations would also be speculative.

Conclusion
This novel remodeling of the time trajectories of the ERG 
provides a new perspective on how the correlation struc-
ture of the time series behaves. The pre-processing using 
a Bayesian approach, with a multivariate t distribution as 
the observation model, enabled explicit regions of inter-
est where the groups waveforms showed time intervals of 
non-overlap between the credible confidence intervals. 
These were distant to the main a- and b- wave peaks, that 
are generally used to compare group differences in neu-
rodevelopmental disorders [33–35]. This analysis may be 
useful when interpreting the rise and fall of the b-wave or 
slope and turning point of the a-wave to gain insights into 
the structure of the waveform before and after the main 
peaks that are shaped by underlying neural pathways [1–
3, 31] and provide information about the location of sig-
nificant fluctuations in the shape of the ERG waveform to 
inform interpretations of the contributions to the wave-
form in retinal and neurological disorders [36, 37]. This 
approach could also benefit analysis of waveforms whose 
nature may be variable owing to cortical topography such 
as visual evoked potentials to identify regions of inter-
est in clinical populations [38]. Similar analyses may also 
benefit changes in the pattern ERG which shows early 
changes in glaucoma that may be analyzed using a Bayes-
ian remodeling approach outlined in this report [31, 39].
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