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Abstract 

Objective  Osteoarthritis (OA) is a disease impacting the synovial joint complex, yet transcriptional changes spe-
cific to shoulder OA remain underexplored. This study aims to profile transcriptomic changes in periarticular tissues 
from patients undergoing shoulder replacement for OA. By correlating these profiles with QuickDASH scores—a 
validated measure of worsening shoulder function—this research seeks to understand the gene expression changes 
associated with clinical decline. Capsular tissue biopsies from shoulder OA patients were compared with those 
from a control group undergoing shoulder stabilization for recurrent instability. This investigation forms part 
of a larger transcriptomic analysis of painful shoulder conditions which will address the current gap in knowledge 
regarding the molecular and genetic underpinnings of shoulder OA, rotator cuff tears and cuff-tear arthropathy.

Results  The analysis revealed that genes most strongly associated with increasing QuickDASH scores across tissues 
were linked to inflammation and stress response. Key pathways involved interleukins, chemokines, complement com-
ponents, nuclear response factors, and immediate early response genes, reflecting a balance between pro- and anti-
inflammatory signalling. Additionally, this study identified unique gene expression patterns in shoulder OA not previ-
ously observed in hip and knee OA, along with novel genes implicated in shoulder OA, highlighting areas for future 
targeted investigation.

Trial registration This investigation has been registered with the Australian New Zealand Clinical Trials Registry 
(ANZCTR), registered on the 26th of March 2018, registration number: 12618000431224, accessible from: https://​
anzctr.​org.​au/​Trial/​Regis​trati​on/​Trial​Review.​aspx?​id=​37466​5&​isRev​iew=​true
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Introduction
Osteoarthritis (OA) is a disease of the synovial joint com-
plex and demonstrates a complex interplay between joint 
destruction and maladaptive repair [1–4]. The genetic 
loci associated with hip and knee OA are different, sug-
gesting diverse genetic risk and pathophysiological 
mechanisms manifest disease within different synovial 
joints [5]. Transcriptomic datasets are being evaluated 
for effector genes in hip and knee OA that can be tar-
geted therapeutically [6]. Transcriptomic analyses inves-
tigating shoulder OA are limited [7–9]. By investigating 
transcript-level changes in different periarticular tissues, 
the molecular pathways of disease that are present in end 
stage shoulder OA may help to understand modifiable 
processes involved in early stages of disease as a target 
for alternate therapies.

Aims
Primary aim
To describe gene expression patterns in different peri-
articular shoulder tissues in patients with advanced OA 
associated with a patient reported outcome measure 
(PROM), the QuickDASH score, a marker of worsening 
pain and disability.

Secondary aim
To compare gene expression in osteoarthritic capsular 
tissue with capsular tissue in patients undergoing arthro-
scopic stabilisation for recurrent shoulder instability.

Main text
Methods
Participants and Surgical methods
This is a prospective case–control series of six patients 
undergoing total shoulder replacement for OA; as com-
pared to twenty-five patients who underwent arthro-
scopic shoulder stabilisation for recurrent instability, 
which formed the control group. [10] Eligible patients 
had experienced more than 6-months of symptoms cor-
relating with characteristic osteoarthritic radiographic 
changes. Patients with cuff arthropathy according to 
Hamada [11] underwent reverse total shoulder replace-
ment (one of six patients, patient 3, for Walch B2 mor-
phology, rather than cuff-tear arthropathy), whereas 
those without full thickness rotator cuff tear on ultra-
sound or MRI underwent anatomic total shoulder 
replacement. Patients with inflammatory arthropathies; 
prior shoulder fracture or dislocation; or corticosteroid 
injection within three months of surgery were excluded. 
Twenty-five patients who underwent arthroscopic shoul-
der stabilisation for recurrent instability formed the 
control group. Eligibility criteria for the control group 

included MRI evidence of an isolated labral tear with-
out degenerative or inflammatory arthropathy, or rotator 
cuff tear. Further, patients who had an instability-episode 
within eight weeks of surgery were excluded.

Surgeries were performed and tissue biopsies obtained 
per protocol, by three specialised shoulder surgeons, 
from Bone, Capsule, Fat, Muscle and Synovial tissue in 
the OA group, and capsule in the control group, totalling 
55 tissue samples for next generation sequencing.

The detailed methodology regarding our RNA extrac-
tion, library preparation, and RNA sequencing methods 
can be found in our protocol paper [10]. In brief, using 
a handheld homogeniser, ~ 20  mg of tissue was homog-
enised in trizol and total RNA was isolated using RNeasy 
columns (Qiagen, Hilden, Germany), according to manu-
facturer’s instructions. Total RNA was eluted with 40 µL 
of RNase-free water. Sequencing libraries were generated 
from 0.5  µg of total RNA using TruSeq Stranded Total 
RNA preparation kit (Illumina, San Diego, USA) as per 
manufacturer’s instructions. Genome-wide mRNA levels 
were measured using the NovaSeq 6000 Sequencing Sys-
tem (Illumina, San Diego, USA).

Fastq files underwent quality trimming with Skewer 
v0.2.2 to remove bases from the 3’ ends with Phred qual-
ity less than 20 [12]. Reads were the mapped to the human 
transcriptome (Gencode V37) using Kallisto v0.46.2 [13]. 
Transcript-level counts were read into R v4.2.1 and were 
aggregated to the gene level for downstream analysis. For 
differential expression analysis, we used DESeq2 1.36.0 to 
identify genes whose expression associated with Quick-
DASH score [14]. This was repeated separately for bone, 
capsule, fat, muscle and synovial samples. Further, differ-
ential gene expression was determined in capsular tissue 
in OA compared with instability. Multi-contrast path-
way analysis with mitch [15] was undertaken referenc-
ing Reactome pathways (Downloaded November 2021) 
[16] to identify differentially expressed pathways that 
have an association with QuickDASH score across all tis-
sue type; and those differentially expressed in capsular 
tissue in OA compared with capsular tissue in instabil-
ity [17]. DESeq2 test statistic of all detected genes were 
used as an input to mitch to ascertain which Reactomes 
were positively or negatively associated with QuickDASH 
scores for all OA tissues. Genes and pathways with a false 
discovery rate (FDR) < 0.05 were considered significant. 
Code: https://​github.​com/​markz​iemann/​shoul​der-​insta​
bility-​oster​oarth​ritis/​blob/​main/​oa_​dge.​Rmd. Data dis-
cussed in this publication has been deposited in NCBI’s 
Gene Expression Omnibus [18], and accessible through 
GEO Series accession number GSE281476 (https://​www.​
ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE28​1476).

https://github.com/markziemann/shoulder-instability-osteroarthritis/blob/main/oa_dge.Rmd
https://github.com/markziemann/shoulder-instability-osteroarthritis/blob/main/oa_dge.Rmd
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE281476
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE281476
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Clinical outcomes
Disabilities of the Arm, Shoulder, and Hand Question-
naire Short Version (QuickDASH) [19] (Supplementary 
Table  1), group details and comparative statistics (Sup-
plementary Table 2) were documented.

Quality control checks for transcriptomic analy-
sis confirmed that all samples had a minimum of 15 
million reads, ensuring robust sequencing depth for 
downstream analyses (Supplementary Fig.  1). Inte-
grated analysis of periarticular tissues demonstrate 

concordance between the Multidimensional scaling 
(MDS) plot (Fig. 1a) and the Pearson correlation heat-
map (Fig. 1b); with strong clustering of muscle samples, 
fat, capsule and synovium shown with bone samples 
scattered throughout, with total number of differen-
tially expressed genes (DEG) up- or downregulated 
according to tissue type (Fig. 1c). Spearman correlation 
heatmap and colour histogram reveals strong clustering 
of samples by tissue type; Muscle, Fat, Capsule, Syn-
ovium, and Bone (Fig. 1d).

Fig. 1  a MDS plot to show the variation between tissue samples. Muscle samples to the right, Fat samples in the centre, Capsule samples 
in the lower left and Synovial samples between Capsule and Fat. However, the Bone samples were less tightly clustered. The result of the MDS 
is confirmed in the correlation heatmaps (b, d). b Pearson correlation heatmap and colour histogram, Capsule (C), Fat (F), Muscle (M), Synovium 
(S) and Bone (B) for patients 1 through to 6. Patient 3 underwent RTSR. Figure 1c. Number of DEGs according to tissue type, FDR < 0.05. Figure 1d. 
Spearman correlation heatmap and colour histogram demonstrating clustering of samples by tissue type; Muscle, Fat, Capsule, Synovium, and Bone
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Integrated analysis of periarticular tissue sample 
variation and clustering: MDS plot, correlation heatmaps, 
and differentially expressed genes
See Fig. 1

Genes and gene pathways associated with increased 
QuickDASH score (worsening disability) according to tissue 
type
Genes downregulated in bone (Supplementary 
Table  3) are involved in GTPase activity and intracel-
lular protein transport (TBC1D3D), immune responses 
(IGLV8-61, NPIPB15) and chondrocyte differentia-
tion and survival (SFRP2). The most downregulated 

genes in capsule were TBC1D3D, IGLV 3–10, and the 
encoded protein part of MAC (C6), which is involved 
in cytolysis. Upregulated genes in capsule were CXCL5, 
CXCL14, FCAR​ and SIK1 (Supplementary Table  3), 
which encode proteins involved in immune and inflam-
matory responses. Downregulation of immunoglobu-
lin genes and upregulation of SIK1 was observed in 
synovium, (Supplementary Fig.  2). Downregulation of 
TBC1D3D was observed in bone, capsule and fat, while, 
while NPIPB15 was downregulated in bone and syn-
ovium (Supplementary Fig. 3).

Fig. 2  Heatmap of top gene pathways correlated with QuickDASH score common to all tissues, p.adjusted MANOVA < 0.000 for all pathways listed. 
Enrichment score is demonstrated on the colour key histogram. Blue indicates downregulation, and red upregulation of pathways listed
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Downregulation of gene pathways common to all tissue 
types were dominated by complement associated path-
ways, others significant pathways are shown in Fig. 2.

Further pathway analysis using a gene expression heat-
map demonstrated the expression of immunoglobulins 
in bone may explain the creation of C4 and C2 activators 
(Fig. 3, and supplementary Table 4).

Genes and biological enrichment processes associated 
with OA compared with instability
With respect to the top differentially expressed genes, 
downregulation of mitochondrial associated genes domi-
nated when comparing osteoarthritis to instability (Sup-
plementary Fig. 3).

Comparing capsular biopsies, OA was character-
ised by downregulation of various signalling path-
ways, including those centred around the RORα (s. 
dist -0.696, p.adjustANOVA 0.000), RAC1 (s.dist 

Fig. 3  Hierarchical unsupervised (not ordered prior to analysis. Genes and samples are positioned based on their observed similarity) clustering 
gene expression heatmap and colour histogram demonstrating significant immunoglobulin expression (Y axis) in bone samples (X axis, 1B–6B) 
which reveal tight clustering and positive z score as encapsulated by the green box
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-0.641, p.adjustANOVA 0.001), NOTCH2 (s.dist 
-0.673, p.adjustANOVA 0.001), CREB1 (s.dist -0.639, 
p.adjustANOVA 0.001), and PI3K genes (s.dist -0.617, 
p.adjustANOVA 0.000). Upregulated pathways in OA 
included translation, amino acid recycling, nonsense 
mediated decay, degradation of mitotic proteins and P53 
activators (p < 0.000, s.dist > 0.61) (Supplementary Fig. 4).

Discussion
Notable and novel genes associated with increasing 
(worsening) QuickDASH score in OA across tissue types
Synovium and capsule
Our study found NR4A3 upregulation, aligning with its 
known role in synovial hyperplasia, a key factor in OA 
pathogenesis. [20] Although NR4A2 gene and protein 
expression contributes to synovial hyperplasia, NR4A3 
gene expression is equivalent in osteoarthritic and nor-
mal knees. [21] NR4A3 upregulation in our study might 
be a shoulder OA-specific biomarker. SIK1, normally 
active in cartilage, was downregulated in knee OA but 
upregulated in shoulder OA, indicating inflammation 
(Supplementary Figs.  10, 13). Because SIK inhibition 
is osteoclastogenic [22], future studies might explore 
potential relationships with the ‘bone former’ OA pheno-
type, and upregulation with subchondral cyst formation, 
or ‘bone resorber’ and OA. Additionally, CXCL5 (supple-
mentary Fig.  13), linked to joint inflammation [23], and 
CXCL2 in muscle (supplementary Fig. 11), and CXCL8 in 
fat (supplementary Fig. 12) were proinflammatory genes 
associated with worsening shoulder function and pain.

Fat
Zinc dependant transcription signalling causes OA pro-
gression after biomechanical injury in vivo via inflamma-
tory mediators [24] and downregulation of FEZF2 in our 
study is, a novel finding in shoulder OA (Supplementary 
Table  3, supplementary Fig.  12). TBC1D3, which delays 
wound healing by altering extracellular vesicle delivery 
[25], was also downregulated, suggesting its potential 
as a biomarker for disease progression (Supplementary 
Table 3, supplementary Fig. 12).

Subchondral bone
SFRP2, which regulates chondrocyte differentiation and 
survival, was downregulated, consistent with findings in 
murine OA models (Supplementary Fig. 14). [26] Down-
regulation may contribute to extracellular matrix break-
down [27], through increased MMP13 expression [28], 
and in our study confirms its relevance in human shoul-
der OA.

Genes and biological processes associated with increasing 
(worsening) QuickDASH score across tissue types 
in shoulder OA
The common reactome pathways linked to worsening 
QuickDASH score show a downregulation of immune, 
inflammatory, and host defence mechanisms. Cell cycle 
and mitotic pathways were upregulated in the joint cap-
sule of OA patients (see supplementary Figs.  4 and 6), 
indicating a complex interplay of inflammation, cell pro-
liferation, and tissue remodelling in end-stage disease. 
A key pathway downregulated across multiple tissues 
(capsule, bone, muscle, fat, synovium, see supplementary 
Figs. 5, 7 and 9) was the scavenging of heme from plasma, 
previously linked to knee OA pathogenesis and inflam-
mation [29], suggesting a common pathway in shoulder 
OA that requires further investigation.

In the synovium, pathways tied to chronic inflamma-
tion, immune dysregulation, and metabolic disturbances 
were prominently downregulated (Supplementary Fig. 9). 
Synovial inflammation, known to drive fibrosis and cap-
sular contracture in OA [30, 31], aligns with upregulated 
cell cycle and mitotic pathways linked to worse Quick-
DASH scores, emphasizing the role of capsular tissue in 
disease progression.

Complement pathways were differentially expressed 
across all tissue types, suggesting local complement acti-
vation (Fig.  2 and supplementary Figs.  5–9). This aligns 
with Assirelli et  al., who described complement activa-
tion fragments in cartilage and synovium occurring with-
out parent molecules from the bloodstream. [7] Further 
post hoc analysis showed that immunoglobulins in bone 
may create C4 and C2 activators (Fig. 3, and supplemen-
tary Table  4); explicably, contamination with blood is 
thought less likely given similar findings in fat, a relatively 
avascular tissue. The creation of C4 and C2 activators 
primarily involves cleavage and activation of complement 
components, leading to the formation of the C3 con-
vertase enzyme complex. This pathway was further ana-
lysed to understand complement activation within the 
synovial joint complex. We posit that the C3 convertase 
enzyme complex, essential for the complement cascade 
and inflammation, is responsible for the injurious seque-
lae of complement activation in periarticular tissues in 
shoulder OA; and through negative feedback inhibition 
downregulated C4 and C2 activators in end-stage disease.

Significant differentially expressed genes in shoulder OA 
(capsular tissue) compared with instability
Targeting mitochondrial dysfunction has been proposed 
for the treatment of OA. [32] In knee OA, cartilage 
degeneration can result from diminished ATP produc-
tion [33], increased oxidative stress [34, 35], and calcium 
dysregulation. [36] Downregulation of the following 
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mitochondrial genes in association with worsening 
shoulder function in our OA cohort is novel: MT-TE, 
MT-TY and Mt-ts1 (Supplementary Fig. 3). Of the top 20 
expressed genes, ATP5MD was singularly upregulated in 
our study (Supplementary Fig. 3), further the tricarbox-
ylic acid pathway is generally upregulated in OA, prob-
ably to increase ATP production for cellular repair, which 
is more pronounced in late disease. [37].

Biological processes downregulated in OA (capsular 
tissue), compared with instability: pathways linked 
to RORα, RAC1, NOTCH2, CREB1, and PI3K
RORα, RAC1, NOTCH2, and CREB1 are upregulated in 
knee OA. [38–40] Although we anticipated the activation 
of inflammatory pathways, signalling and surveillance 
pathways were most significantly differentially expressed 
in OA compared to instability (see supplementary Fig. 3). 
RORα has some inflammatory potential, as IL-6/STAT3 
pathway downregulation occurs upon RORα blockade in 
mice. [39] NOTCH2 sensitizes chondrocytes to TNFα’s 
inflammatory action [41], and sustained NOTCH1 acti-
vation promotes an OA phenotype, while transient acti-
vation is chondroprotective, [42] suggesting a potential 
target for DMOADs.

The downregulation of the nonsense-mediated decay 
(NMD) pathway in OA may be driven by chronic inflam-
mation, oxidative stress, ER stress, and aging, reducing 
the degradation of faulty mRNAs and contributing to 
harmful truncated proteins. Aberrant RAC1 activity is 
linked to chondrocyte hypertrophy and mineralization, 
precursors to OA, with OCRL-1 injection showing pro-
tective effects in murine models. [43] Activated RAC1 is 
significantly upregulated in OA knees, enhancing chon-
drocyte hypertrophy and matrix degradation in  vitro. 
[44] Whether inhibition of Rac1 activity in articular 
chondrocytes in humans has the potential to delay OA 
development in humans is an area for future study.

PI3K/AKT/mTOR signalling, which promotes chon-
drocyte proliferation and reduces apoptosis [45], is 
inhibited in knee OA. [46] We observed downregulation 
of PI3K and KAT6A in capsular tissue of osteoarthritic 
shoulders, consistent with disease mechanisms described 
in other joints. [45, 47, 48].

Limitations
Despite varying baseline QuickDASH scores (38.6—
86.4), our transcriptomic inferences about worsening 
shoulder disability may not apply across the disease spec-
trum. Obtaining tissue samples at different disease stages 
could help identify unique transcriptomic patterns over 
time.

The tight clustering in the MDS plot (Fig. 1a) and suf-
ficient read counts (> 15 million for all but four samples) 

suggest the low yield of differentially expressed genes 
in the OA group (N = 6) is likely due to the small sam-
ple size rather than similar pathway expression. Both 
parametric and non-parametric analyses showed similar 
results, indicating a negligible batch effect; non-paramet-
ric results were reported due to the small sample size.

Shoulders with instability exhibit an anabolic rather 
than inflammatory or catabolic phenotype [9], allow-
ing gene comparisons after a quiescent period post-
trauma. Despite age and sex differences between groups, 
prior work showed no significant relationship between 
gene expression and these factors, supporting the use 
of instability as a control. [49] While recurrent shoulder 
instability is a known OA risk factor, the contribution of 
initial trauma, recurrent episodes, or other mechanisms 
remains unclear. Excluding patients with a history of 
instability in the OA group assumes that genetic changes 
from instability are unrelated to OA.

Metabolic syndrome-associated OA is recognized, 
but its mechanisms are unproven. [50] Our study found 
clear between-group differences in metabolic syndrome 
risk factors (BMI, HbA1c, hypercholesterolemia, hyper-
tension) when comparing OA and instability. Larger 
studies are needed to explore transcriptomic changes 
in metabolic syndrome patients with and without OA 
before interpreting gene and pathway differences related 
to inflammation, protein synthesis, and mitochondrial 
genes as integral to OA rather than metabolic syndrome.
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Supplementary material 1: Supplementary figure 1. Quality Control analy-
sis. There were 4 samples with fewer than 15M reads: 2S, 6B, 2F and 6C

Supplementary material 2: Supplementary figure 2. Figure Volcano plot 
with log2FoldChange in the horizontal coordinate and -log10(P-value) in 
the vertical coordinate, of significantly differentially DEGs in shoulder OA 
compared with instability. Red nodes indicate upregulated DEGs with FDR 
of 0.05.

Supplementary material 3: Supplementary figure 3. Top 20 differentially 
expressed genes in capsular tissue biopsies between OA (case) and 
instability (control). Mitochondrial related genes exhibited the highest fold 
change of all significantly downregulated genes.

Supplementary material 4: Supplementary figure 4. Biological enrichment 
processes in OA compared with instability.

Supplementary material 5: Supplementary figure 5. Top ranked biological 
enrichment processes in bone associated with QuickDASH score. Path-
ways were prioritised based on the magnitude of enrichment score after 
removing sets with FDR>0.05.

Supplementary material 6: Supplementary figure 6. Top ranked biological 
enrichment processes in capsule associated with QuickDASH score. Path-
ways were prioritised based on the magnitude of enrichment score after 
removing sets with FDR>0.05.

Supplementary material 7: Supplementary figure 7. Top ranked biologi-
cal enrichment processes in muscle associated with QuickDASH score. 
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Pathways were prioritised based on the magnitude of enrichment score 
after removing sets with FDR>0.05.

Supplementary material 8: Supplementary figure 8. Top ranked biological 
enrichment processes in fat associated with QuickDASH score. Pathways 
were prioritised based on the magnitude of enrichment score after 
removing sets with FDR>0.05.x.

Supplementary material 9: Supplementary figure 9. Top ranked biological 
enrichment processes in synovium associated with QuickDASH score. 
Pathways were prioritised based on the magnitude of enrichment score 
after removing sets with FDR>0.05.

Supplementary material 10: Supplementary figure 10. Hierarchical cluster-
ing gene expression heatmap and colour histogram demonstrating top 
differentially expressed genes in synovium associated with worsening 
(increased) QuickDASH score.

Supplementary material 11: Supplementary figure 11. Hierarchical 
clustering gene expression heatmap and colour histogram demonstrating 
top differentially expressed genes in muscle associated with worsening 
(increased) QuickDASH score.

Supplementary material 12: Supplementary figure 12. Hierarchical cluster-
ing gene expression heatmap and colour histogram demonstrating top 
differentially expressed genes in fat associated with worsening (increased) 
QuickDASH score.

Supplementary material 13: Supplementary figure 13. Hierarchical 
clustering gene expression heatmap and colour histogram demonstrating 
top differentially expressed genes in capsule associated with worsening 
(increased) QuickDASH score.

Supplementary material 14: Supplementary figure 14. Hierarchical 
clustering gene expression heatmap and colour histogram demonstrat-
ing top differentially expressed genes in bone associated with worsening 
(increased) QuickDASH score.

Supplementary material 15: Supplementary table 1. Pre- and post-oper-
ative patient reported QuickDASH score between groups across various 
time points. Student’s t-tests were performed for continuous data.

Supplementary material 16: Supplementary table 2. Baseline preoperative 
characteristics in the osteoarthritis and instability groups. All data rounded 
to 3 decimal places. Student’s t-tests were performed for continuous data.

Supplementary material 17: Supplementary table 3. Top genes correlating 
with QuickDASH according to periarticular tissue with minimal significant 
fold change. All data rounded to 3 decimal places.

Supplementary material 18: Supplementary table 4. Top 20 genes, crea-
tion of C4 and C2 activators. The Gene Rank is based on the rank of the 
DESeq2 test statistic value, centred around zero which determines no 
change in expression.
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