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Abstract 

Objectives Food products are often contaminated by pathogens and spoilage bacteria. Most of them can form 
biofilms, a community of cells embedded in protective extracellular matrix layers resistant to harsh conditions, includ-
ing antibiotics. Therefore, alternative antibiofilm agents are required to overcome biofilm formation. This study aims 
to determine and quantify the antibiofilm activity of supernatants from plant-associated bacteria against biofilms 
of foodborne pathogen and food spoilage bacterium, namely Bacillus cereus and Bacillus subtilis.

Results Plant-associated bacteria (PAB) have shown promising antibiofilm activities against biofilm-forming patho-
gens in previous studies. Thirteen PAB isolated from Ternate, Indonesia were used in this study. Supernatants of PAB 
were subjected to antimicrobial activity and quorum quenching detection, both using the well diffusion method. 
Four supernatants inhibited the growth of B. subtilis, but none affected the growth of B. cereus. Eight supernatants 
were able to disrupt the quorum sensing system of an indicator bacterium, wild-type Chromobacterium viola-
ceum. Biofilm inhibition and destruction were quantified using 96-well microplates. The highest biofilm inhibition 
and destruction activities of PAB supernatants against each of B. cereus and B. subtilis biofilms were > 76%, and were 
later confirmed by light microscope and scanning electron microscope. Brine shrimp lethality assay (BSLA) was con-
ducted and revealed that the selected PAB supernatants were non-toxic. The 16S rRNA gene of PAB were sequenced 
and they showed similarities to Bacillus, Priestia, and Chryseobacterium. Compounds in the supernatants were deter-
mined by GC–MS which revealed contents of fatty acids, ethyl esters, and diketopiperazines. Therefore, PAB superna-
tants have potential as antibiofilm agents against biofilm formed by Bacillus cereus and Bacillus subtilis.
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Introduction
Food safety is a major concern in food industries due 
to the global widespread of unsafe food which poses 
threats to human health. Issues regarding food safety 
may be the results of chemical or microbiological haz-
ards and other challenges, such as poor hygiene of food 
handlers, unsanitary food preparation, raw or under-
cooked food, improper food storage, etc. This leads to 
bacterial contamination, for example Bacillus cereus and 
Bacillus subtilis [1]. They can survive high food process-
ing temperatures due to their endospores. B. cereus is a 
foodborne pathogen that causes mild or severe food poi-
soning via toxins [2]. It is found in milk, infant foods, 
and is a potential risk in the food industry [3, 4]. World 
Health Organization (WHO) reported an estimated 600 
million foodborne illnesses, mostly diarrheal cases, and 
420,000 deaths in a year [5]. Meanwhile, B. subtilis is a 
bacterium that causes food spoilage, such as ropiness in 
bread [6]. Bacillus licheniformis is another spoilage bac-
terium that forms biofilms quickly in the dairy industry 
[7].

Both B. cereus and B. subtilis can form biofilms, a group 
of bacterial cells living beneath a self-produced matrix 
of extracellular polymeric substance (EPS). B. cereus is a 
biofilm-forming species with high EPS production and 
motility [3]. Biofilm matrices are responsible for biofilm 
adhesion to certain surfaces [8]. They can form on biotic 
or abiotic surfaces [9]. Biofilms optimize conditions for 
bacterial survival in food processing. If biofilms form on 
food contact surfaces, the bacteria sheltered in biofilms 
can easily contaminate food products. This increases food 
safety concerns, such as pathogen transmissions that lead 
to foodborne illnesses and spoilage bacteria transmis-
sions that reduce shelf life and promote financial losses 
[10]. Biofilm may form via cell-to-cell communication, 
known as quorum sensing (QS), in unsuitable conditions. 
One of the strategies to control biofilms is disrupting the 
quorum sensing system, referred to as quorum quench-
ing (QQ). Due to their matrices, bacterial cells within 
biofilms are generally more resistant to external stresses 
or treatments, such as antibiotics and sanitizers [11].

The use of antibiotics has increased over the years 
and is not just limited to treating bacterial infections in 
humans. Antibiotics have been used in agriculture and 
animal farming, for example, to treat plant infections or 
promote animal growth. This leads to an increase in anti-
biotic resistance, rendering it ineffective in treating bac-
terial infections, including biofilm-related infections [12]. 
According to Yuan et  al. [13], biofilm formation in Sal-
monella typhimurium M3 was promoted in the presence 
of tetracycline at sub-inhibitory concentrations, high-
lighting the concerns of low environmental antibiotics 
concentration on foodborne pathogen biofilm-forming 

ability. Most bacterial cells populating a biofilm complex 
are antibiotic-resistant. Additionally, biofilms consist of 
bacterial cells sheltered under a matrix that acts as a bar-
rier, thus protecting the cells from antibiotics, extreme 
pH and temperature, high pressure, etc. This calls for 
alternative approaches to combat biofilms, especially in 
the food industry, such as antibiofilm agents [14].

Alternative antibiofilm agents are therefore required 
to combat biofilms. Antibiofilm agents may be extracted 
from natural sources, including plants. Many plants are 
hosts to bacterial communities, namely plant-associated 
bacteria (PAB), which are generally classified into endo-
phytic (within plant tissues), phyllospheric (on plant tis-
sues above ground), and rhizospheric bacteria (soils near 
plant root). PAB is capable of producing beneficial com-
pounds, such as plant-growth hormones and antimicro-
bial compounds to resist plant pathogens [15]. According 
to Vanessa and Waturangi (2021), the extracts of phyllo-
spheric bacteria inhibited and destructed biofilms of B. 
cereus and B. subtilis [16].

The aim of this study is to determine and quantify the 
antibiofilm activity of supernatants from plant-associated 
bacteria recovered from Ternate, Indonesia against B. 
cereus and B. subtilis. PAB were molecularly identified 
and bioactive contents of the supernatants were identi-
fied using GC–MS analysis.

Main text
Methods
Bacterial cultivation
Soil samples were obtained from rhizospheres area in 
Morotai, Tidore, and Ternate, North Maluku A 500-g 
soil sample was collected at a depth of ± 5‒30 cm around 
the plant roots. Isolation was conducted using the serial 
dilution method with 0.85% of sterile saline solution. 
The dilutions were plated on Nutrient Agar (NA; HiMe-
dia) and Yeast Extract-Malt Extract Agar (ISP 2; HiMe-
dia), then incubated at 30  °C for 24–48  h for NA and 
7–14 days for ISP 2. Thirteen PAB isolates were obtained 
(FT5: butterfly pea rhizosphere; F3A.2: butterfly pea 
nodule; RC2.2: afo clove rhizosphere; RC3.1: afo clove 
rhizosphere; M6.2: butterfly pea nodule; RCA8: afo clove 
rhizosphere; RCA4: afo clove rhizosphere; RCA7: afo 
clove rhizosphere; PTM3: shameplant nodule; DHG3: 
butterfly pea rhizosphere; DWR1: butterfly pea rhizo-
sphere; TE1: gold mine soil; TE2: gold mine soil). All 
PAB isolates were cultured on Luria–Bertani Agar (LA; 
Oxoid) (10  g of tryptone, 5  g of yeast extract, 10  g of 
NaCl, 20 g of agar bacto, 1 L of distilled water) and incu-
bated at 28 °C for 24 h. QS indicator bacterium, wild-type 
C. violaceum, was obtained from Atma Jaya Culture Col-
lection and cultured on LA and incubated at 28  °C for 
48  h. Bacillus cereus ATCC 10876 and Bacillus subtilis 
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ATCC 6633 were cultured on LA and incubated at 37 °C 
for 24  h. All isolates were stored at -4  °C and routinely 
cultured.

Supernatant production
Each PAB isolate was cultured in Luria–Bertani Broth 
(LB; Oxoid). Cultures were transferred into sterile coni-
cal tubes and centrifuged at 5752 ×g for 20  min. Super-
natants were collected and freeze-dried for 48  h, then 
stored at − 20 °C until further use [17].

Detection of antimicrobial activity
Inhibition of planktonic growth was detected using the 
agar well diffusion method [18]. B. cereus and B. subtilis 
were each cultured in LB and adjusted to OD600 of 0.132. 
Cultures were continuously streaked onto Mueller–Hin-
ton Agar (MHA; Oxoid). The obtained supernatants were 
loaded into wells created with cork borers. Plates were 
incubated at 37  °C for 24  h. Streptomycin 10  mg/mL 
was used as positive control and 1% dimethyl sulfoxide 
(DMSO) was used as negative control. This method was 
performed in triplicates.

Detection of quorum quenching activity
Quorum quenching activity was detected using the agar 
well diffusion method [18]. Wild-type C. violaceum was 
cultured in LB. The culture (OD600 = 0.132) was continu-
ously streaked onto LA. The obtained supernatants were 
loaded into wells created with cork borers. Plates were 
incubated at 28 °C for 24 h. Streptomycin 10 mg/mL was 
used as positive control and 1% DMSO was used as nega-
tive control. This method was performed in triplicates.

Quantification of antibiofilm activity
Antibiofilm activity was quantified using two assays: 
inhibition and destruction. B. cereus and B. subtilis were 
cultured in Brain Heart Infusion Broth (BHIB; Merck) 
supplemented with 2% glucose (Merck). For inhibition 
assay, 100 µL of each culture (OD600 = 0.132) was added 
with 100  µL of each supernatant into a 96-well micro-
plate, then incubated (37 °C, 24 h). For destruction assay, 
100 µL of each culture (OD600 = 0.132) was added into 
a 96-well microplate and incubated (37  °C, 24 h). Then, 
100  µL of each supernatant was added and incubated 
(37  °C, 24  h). Sterile culture media and the cultures 
of B. cereus and B. subtilis were used as controls. After 
incubation, media and cells were discarded. Wells were 
rinsed and air-dried. Cells were stained with 0.4% crys-
tal violet for 30  min, then the dye was discarded. Wells 
were rinsed and air-dried, then 96% ethanol was added 
to each well. Absorbance of the final mixtures was meas-
ured at 595 nm (Tecan M200 Pro); 96% ethanol was used 
as blank. This method was performed in triplicates. The 

percentage of biofilm inhibition and destruction was cal-
culated using the formula [19]:

Microscopic observation
Destructed biofilms were observed using light micros-
copy (LM) and scanning electron microscopy (SEM). 
Supernatants exhibiting the highest destruction activity 
to B. cereus and B. subtilis were selected. B. cereus and 
B. subtilis were each cultured in BHIB supplemented 
with 2% (w/v) glucose. Each culture (OD600 = 0.132) 
was added onto a sterile cover glass and incubated for 
24 h at 37 °C. Each elected supernatant was added onto 
the cover glass and reincubated overnight. Cover glass 
was rinsed with distilled water. For LM, cover glass was 
stained with 0.4% crystal violet for 10  min, rinsed, and 
observed at 40 × magnification. For SEM, samples were 
fixed with 2.5% (w/v) glutaraldehyde at 4  °C overnight. 
Samples were dehydrated with ethanol for 15 min in each 
concentration: 30% (v/v), 50% (v/v), 70% (v/v), 96% (v/v), 
and 100% (v/v); followed by a 10-min incubation period 
at 37  °C to dry samples. Samples were coated with gold 
and observed using SEM [20].

Toxicity assay
This assay was performed using brine shrimp lethal-
ity assay (BSLA). Artificial seawater was prepared by 
dissolving 38  g of NaCl in 1 L of distilled water. Sam-
ple stock solutions of 10,000 µL/L were prepared using 
artificial seawater as solvents, then diluted to 100, 500, 
and 1000 µL/L. Three milligrams of brine shrimp eggs 
were hatched in 350  mL of artificial seawater overnight 
at room temperature with aeration and illumination. 
Hatched nauplii were transferred into artificial seawater 
(4.5  mL) in test tubes. Each PAB supernatant (0.5  mL) 
was added into the tubes and incubated under the same 
conditions. Potassium dichromate  (K2Cr2O7) 10  mg/mL 
was used as positive control and artificial seawater was 
used as negative control. The mortality percentage was 
calculated using the formula [21]:

Molecular identification of plant‑associated bacteria
Plant-associated bacterial DNA was isolated using the 
Wizard Genomic DNA Purification Kit (Promega). DNA 
amplification used a mixture of 12.5 µL of GoTaq, 9.5 µL 

Inhibition or Destruction (%)

=

Abs. growth control− Abs. sample

Abs. growth control
× 100%

Mortality (%) =
Dead nauplii

Total nauplii
× 100%
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of  ddH2O, 1 µL of DNA template, 1 µL of forward primer 
63F (5′-CAG GCC TAA CAC ATG CAA GTC-3′) and 1  µL 
of reverse primer 1387R (5′-GGG CGG AWG TGT ACA 
AGG C-3′) [22]. PCR conditions were set to: pre-dena-
turation (94 °C, 2 min), 25 cycles of denaturation (94 °C, 
30 s), annealing (55  °C, 30 s), elongation (72  °C, 1 min), 
post-elongation (72  °C, 20  min) [23]. PCR-amplified 
products were separated using agarose gel electrophore-
sis (1% agarose) and visualized using GelDoc. 16S rRNA 
gene sequencing was conducted by Genetika Science and 
the results were submitted to GenBank.

GC–MS analysis
Contents of PAB supernatants were analyzed using GC 
Trace 1310, MS ISQ LT, and TG-5MS. Each of the thir-
teen PAB supernatants was diluted in 2 mL of sterile LB 
and filtered with a 0.22 µm microfilter. The samples were 
each injected at a volume of 1 µL. Helium gas 99.999% 
was used as carrier gas at 1 mL/min flow rate. The oven 
was set to 250 °C [23].

Statistical analysis
Data analysis was carried out with IBM SPSS Statistics 25 
using parametric independent-samples t-test and non-
parametric Mann–Whitney test.

Results
Detection of antimicrobial activity
Among thirteen PAB supernatants, none affected the 
planktonic growth of B. cereus. Four PAB supernatants, 
namely FT5, F3A.2, RC2.2, and PTM3, formed clear 
zones around the wells which indicate B. subtilis growth 
inhibition (Supplementary Table 1).

Detection of quorum quenching activity
Eight PAB supernatants, namely FT5, RC3.1, RCA4, 
RCA7, PTM3, DWR1, TE1, and TE2, generated opaque 
zones around the wells which indicate QQ activity 
against wild-type C. violaceum (Supplementary Table 2).

Quantification of antibiofilm activity
In this assay, four PAB supernatants which earlier showed 
antimicrobial activity were excluded from the inhibi-
tion assay since any biofilm inhibition may be caused by 
inhibited growth. Each supernatant showed both inhi-
bition and destruction activities against biofilms of B. 
cereus and B. subtilis (Table 1, supplementary Fig. 1 and 
2).

Microscope observation
Both LM and SEM showed that biofilms formed by B. 
cereus and B. subtilis treated with the supernatants of 
RCA8 and FT5, respectively, were prominently reduced 
compared to the control groups (Fig.  1a, b). Based on 
EDS, B. cereus control and treatment groups contained 
C, N, O, Na, Mg, Si, P, and Ca. B. subtilis control group 
also contained the same elements with the addition of 
Al, although N and P were not detected in the treatment 
group (Supplementary Table 3).

Toxicity assay
Supernatants with the highest antibiofilm activities, 
namely FT5, F3A.2, RCA8, and DHG3, were selected for 
BSLA. All supernatants at every concentration produced 
0% mortality rates.

Table 1 Antibiofilm activity (%) of plant-associated bacteria supernatants against B. cereus and B. subtilis 

Isolates B. cereus B. subtilis

Inhibition (%) Destruction (%) Inhibition (%) Destruction (%)

FT5 77.23 71.85 – 81.43

F3A.2 48.01 72.45 – 77.75

RC2.2 74.10 73.16 – 77.23

RC3.1 73.63 69.97 44.25 73.35

M6.2 82.11 70.35 62.13 69.24

RCA8 83.07 77.99 76.12 71.04

RCA4 73.69 77.34 51.88 69.03

RCA7 43.50 36.55 43.24 61.42

PTM3 39.33 75.31 – 59.97

DHG3 84.87 77.38 70.83 76.37

DWR1 81.35 77.11 69.19 66.20

TE1 77.70 76.32 70.35 70.02

TE2 44.03 71.41 62.45 69.71
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Molecular identification of plant‑associated bacteria
16S rRNA gene sequences revealed similarities of PAB 
isolates to three genera, namely Bacillus, Priestia, and 
Chryseobacterium. All results have been submitted to 
GenBank with the assigned accession numbers (Supple-
mentary Table 4).

GC–MS analysis
Contents of bioactive compounds in PAB supernatants 
exhibiting the highest antibiofilm activities were analyzed 
using GC–MS (Supplementary Fig.  3–8). Some com-
pounds belong to similar groups and several individual 
compounds were found in multiple PAB supernatants 
(Table 2).

Statistical analysis
Independent samples t-test and Mann–Whitney test 
revealed significant differences (p < 0.05) between all 

control and treatment groups of B. cereus and B. subtilis 
in each inhibition and destruction assays (Supplementary 
Fig. 9–12).

Discussion
One of the challenges in the food industry is food con-
tamination via biofilms, a complex that provides cell 
resistance to antimicrobial and other harsh treatments 
[2]. Therefore, alternative antibiofilm agents are required 
to combat biofilms. In this study, antibiofilm activities 
of thirteen PAB supernatants were assessed against B. 
cereus and B. subtilis. Based on the antimicrobial activ-
ity assay, four supernatants which inhibited the plank-
tonic growth of B. subtilis contained n-hexadecanoic 
acid, trans-13-octadecenoic acid, and 2-hydroxy-1-
(hydroxymethyl)ethyl ester (Table  2), which inhibited 
planktonic growth of B. subtilis [24].

Fig. 1 SEM observation of B. cereus and B. subtilis destructed biofilms. a B. cereus control (left) and control + RCA8 (right). b B. subtilis control (left) 
and control + FT5 (right)
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Eight PAB supernatants demonstrated QQ activity 
against wild-type C. violaceum (supplementary Table 2). 
This bacterium is a model organism in QS-related stud-
ies due to its QS-mediated violacein pigment production, 
observable as purple colonies. Violacein synthesis is reg-
ulated by the CviI/CviR QS system [25].

Based on antibiofilm activity quantification, PAB 
supernatants were able to inhibit biofilm formation and 
destruct formed biofilms of B. cereus and B. subtilis. 
The highest biofilm inhibition and destruction activi-
ties against B. cereus biofilms were exhibited by DHG3 
(84.87%) and RCA8 (77.99%), respectively. Biofilms of B. 
subtilis was best inhibited by RCA8 (76.12%), while the 
highest destruction activity was shown in FT5 (81.43%) 
(Supplementary Table 3). Varying percentages are due to 
different types and amounts of contents in PAB superna-
tants, which contribute various antibiofilm mechanisms 
[26]. EPS compositions in B. cereus and B. subtilis biofilm 
also affect their capabilities in sustaining biofilm stability 
[27]. Based on the previous assay, the antibiofilm mech-
anism of PAB supernatants may be via QS disruption 
occurring in B. cereus and B. subtilis which utilize autoin-
ducer peptides (AIPs) [28]. For example, kinase inhibitors 
can disrupt QS in some Gram-positive bacteria [29].

Enzymes can also disperse biofilms by degrading 
matrix components, for example polysaccharides, 
DNA, and proteins, which can be hydrolyzed by glycosi-
dases, deoxyribonucleases, and proteases [32]. LM and 
SEM showed that both control groups produced dense 
biofilms which decreased in the treatment groups. B. 

subtilis biofilms contain three major proteins: TapA, 
TasA, and BslA. TapA attaches fibers formed by TasA to 
bacterial cell walls to increase biofilm durability, while 
BslA is a hydrophobic film that surrounds biofilms. In 
B. cereus, fibers are formed by TasA and CalY proteins 
[33]. Based on EDS, the elements C, N, and P decreased 
after treatment. These elements account for major bio-
film EPS, namely polysaccharides, proteins, and DNA 
[17]. O, Na, and Si increased after treatment. As biofilm 
depth increases, the oxygen concentrations inside are 
reduced [34]. Sodium chloride, containing Na, induced 
stresses that led to attachment and aggregation in bio-
film formation [35]. Mg and Ca also facilitate biofilm 
initial attachment [36]. The increase of silicone was 
potentially caused by adsorption from the cover glass in 
sample preparation [23]. Al was decreased in B. subtilis 
treatment group. Aluminum may decrease after treat-
ment due to its usage for improving biofilm maturation 
[23].

Based on BSLA, supernatants of FT5, F3A.2, RCA8, 
and DHG3 had no mortality effect on brine shrimp at 
1000 µL/L. The selected supernatants are considered 
non-toxic since the highest concentration of 1000 µL/L 
had 0% mortality rates [37].

The 16S rRNA gene sequences of thirteen PAB iso-
lates resulted in > 98% identity to the genera of Bacil-
lus, Priestia, and Chryseobacterium. Extracts of 
Priestia aryabhattai and Bacillus spp. were reported 
to inhibit biofilms of B. subtilis and Staphylococcus 
aureus, respectively [38, 39]. Priestia megaterium and 

Table 2 Bioactive compounds in supernatants of plant-associated bacteria

Isolate Compound name Area %

FT5 trans-13-Octadecenoic acid 23.41

n-Hexadecanoic acid 14.41

Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester 3.80

F3A.2 trans-13-Octadecenoic acid 26.98

Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester 9.10

n-Hexadecanoic acid 17.55

RC2.2 trans-13-Octadecenoic acid 23.16

n-Hexadecanoic acid 16.21

Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester 3.86

RCA8 Pyrrolo[1,2-α]pyrazine-1,4-dione,hexahydro-3-(phenylmethyl)- 4.54

Pyrrolo[1,2-α]pyrazine-1,4-dione,hexahydro-3-(2-methylpropyl)- 3.61

n-Hexadecanoic acid 6.04

PTM3 n-Hexadecanoic acid 8.19

Ergotaman-3′,6′,18-trione,9,10-dihydro-12′-hydroxy-2′-methyl-5’-(phenylmethyl), (5′α,10α)- 3.68

trans-13-Octadecenoic acid 8.48

DHG3 Pyrrolo[1,2-α]pyrazine-1,4-dione,hexahydro-3-(phenylmethyl)- 5.80

Pyrrolo[1,2-α]pyrazine-1,4-dione,hexahydro-3-(2-methylpropyl)- 4.77

n-Hexadecanoic acid 7.23
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Chryseobacterium sp. produced cellulase that disrupted 
B. cereus biofilms which require the presence of cellu-
lose [30, 31].

GC–MS analysis showed an abundance of fatty acids: 
n-hexadecanoic acid, known to inhibit biofilm forma-
tion in Bacillus spizizenii and S. aureus by impeding cell 
adhesion to surfaces [40], and trans-13-Octadecenoic 
acid, which inhibits S. aureus biofilms by disrupting QS 
regulator genes [41]. Some supernatants contained ethyl 
esters which interacted with QS receptors in wild-type C. 
violaceum to lower EPS production [42]. Pyrrolo[1,2-α]
pyrazine-1,4-diones were found in several supernatants, 
which inhibited biofilm formation and disrupted formed 
biofilms in Escherichia coli [43, 44].

Limitations
Further studies should be conducted to determine the 
molecular antibiofilm mechanism of the compounds 
contained in PAB supernatants. Toxicity assays should be 
performed on other subjects considering future applica-
tions to human-consumed food products.
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