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Abstract 

Objective  The main purpose of this work is to present an exponentially fitted non-polynomial cubic spline method 
for solving time-fractional singularly perturbed convection-diffusion problem involving large temporal lag.

Result  The time-fractional derivative is considered in the Caputo sense and discretized using backward Euler tech-
nique. Then, on uniform mesh discretization, a non-polynomial cubic spline scheme is constructed along the spa-
tial direction. To alleviate the effect of the perturbation parameter, an exponential fitting factor is introduced 
to the scheme. The parameter-uniform convergence of the proposed method is proved rigorously and shown to be 
ε-uniform convergent with order of convergence O((�t)2−α

+M
−1) . The validity of the proposed method is tested 

using model examples and the experimental results are in agreement with the theoretical expectation and produces 
more accurate solution than some existing methods in the literature.
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Introduction
Even though the history of fractional calculus trace back 
to 1695, when Leibnitz introduced for the first time, it 
doesn’t applied in the modeling of problems arising in 
science and engineering for a long time. However, for 
the last few decades, fractional calculus began to attract 
the increasing attention of many scientist and research-
ers due to its wide application in the modeling of real life 
problem. This is due to the fact that fractional differential 
equations rather than integer order differential equations 
can better model natural physics process and dynamic 
system processes [1–3]. Fractional differential equation is 
the generalization of classical order differential equation 

by replacing the integer order derivative with arbitrary 
fractional order [3]. Finance, hydrology, control system, 
viscoelasticity, damping laws, fluid mechanics, biology, 
physics, engineering, modeling of earth quakes and etc 
are some of its application areas, [1, 2] and the references 
therein.

In general, fractional partial differential 
equations(FPDEs) can be divided as time-fractional 
partial differential equations, space-fractional partial 
differential equations or space-time fractional partial dif-
ferential equations [4]. The analytical solution of many 
time-fractional partial differential equations are not 
available due to their difficulties in solving such differen-
tial equations exactly and even if the analytical solution is 
available, their construction with special functions make 
their computations very difficult. Thus, the numerical 
techniques has gained a great keenness in solving such 
equations numerically [5, 6]. Crank-Nicholson method 
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based on spline functions with a tension factor [1], com-
pact finite difference method [5], finite difference method 
[6, 7], a collocation method based on cubic-trigonomet-
ric B-splines approach [8], a fully implicit finite difference 
scheme based on extended cubic B-splines [9] are few of 
the recently developed numerical methods to solve time-
fractional partial differential equations.

Sometimes, the future state of a certain physical prob-
lems may not only determined by their current state, 
but also by their past history and such physical prob-
lems are modeled by a delayed partial differential equa-
tions. For example, the time to maturity and incubation 
time, delayed feedback, time to transport, population 
dynamics, the time lag for getting information and HIV 
infection of CD4 + T-cells to describe the time between 
infection of CD4 + T-cells and the emission of viral par-
ticles on a cellular level [1, 10] are few of the application 
areas of delayed partial differential equations. Many con-
siderable works have been carried out on the numerical 
methods for solving time-fractional delay partial differ-
ential equations [5, 10, 11].

In this paper, on the rectangular domain D = �x ×�t , 
we have considered the time-fractional singularly per-
turbed convection-diffusion problem involving large 
temporal lag of the form:

where 0 < α < 1 , Ŵ = Ŵl ∪ Ŵr ∪ Ŵb is the bound-
ary, D = �x ×�t = (0, 1)× (0,T ] , Dα

t  is the Caputo 
fractional derivative, ℘ is a delay parameter and ε is a 
positive constant satisfying 0 < ε ≪ 1 called singular 
perturbation parameter. If p(x) ≥ p > 0 , q(x, t) ≥ q > 0 , 
r(x, t)  = 0 and g(x, t) are smooth and bounded functions 
on the domain D and the given initial data and boundary 
conditions are also smooth and bounded in their domain, 
then the solution of the model problem (1) exhibit a right 
boundary layer of width O(ε) . When α = 1 , the problem 
in (1) gives the usual integer order singularly perturbed 
convection-diffusion problem. The numerical treat-
ment of such classical or integer order problem with a 
delay and without a delay have been studied extensively 
by many researchers (see [12–19] and the references 
therein).

Unlike the classical order or integer order singularly 
perturbed partial differential equations, the fractional 
order in particular the time-fractional singularly per-
turbed partial differential equations are not studied 
well and needs attention. In such problems, due to the 
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Lεu(x, t) ≡ Dα
t u(x, t)− εuxx(x, t)+ p(x)ux(x, t)+ q(x, t)u(x, t) = −r(x, t)u(x, t − ℘)+

g(x, t), (x, t) ∈ D,
u(x, t) = ψ(x, t), for (x, t) ∈ Ŵb = [0, 1] × [−℘, 0],
u(0, t) = φl(t), for (x, t) ∈ Ŵl = {0} × (0,T ] = {(0, t) : 0 < t ≤ T },
u(1, t) = φr(t), for (x, t) ∈ Ŵr = {1} × (0,T ] = {(1, t) : 0 < t ≤ T },

presence of the singular perturbation parameter ε , all 
classical numerical methods that are used to solve time-
fractional PDEs fails or deteriorate to solve such prob-
lems. Moreover, the presence of the fractional order in 
the given differential equation is also another challenge 
in solving such problems. To the best of the author’s 
knowledge, a stable finite difference method [20], cubic 
B-spline collocation method [21] and nonstandard 
finite difference method [22] are the only recently pro-
posed numerical methods for solving the problem under 
consideration. As a result, it is possible to say that the 
numerical treatment of the considered problem is at 
infant stage. Motivated by the aforementioned gap, we 
have proposed a non polynomial cubic spline numerical 
scheme for the problem under consideration. To develop 
the scheme, we have considered the time-fractional 
derivative in the Caputo sense and discretized using 
implicit Euler method. The Caputo fractional derivative 
allows us to use the classical initial and boundary condi-
tions. Moreover, it takes account of the interaction within 
the past. Then, a non polynomial cubic spline scheme is 
constructed along a uniform spatial discretization.

Some preliminaries and properties of continuous 

solution
Firstly, we present some basic definitions for fractional 
derivatives which are used here with this paper.

Definition 1  Let z be a complex number with 
(Re(z)) > 0 . Then, the function defined by:

is called gamma function.

Definition 2  (Ref. [20]) The α-order Caputo fractional 
differentiation of a function u(x,  t) with respect to t is 
defined by:

The differential operator, Lε in (1) satisfies the follow-
ing continuous maximum principle.

Ŵ(z) =

∫

∞

0
e−ξ ξ z−1dξ ,

∂αu(x, t)

∂tα
=











1
Ŵ(n−α)

�

t

0

∂nu(x,s)
∂sn

(t − s)n−α−1ds, if α ∈ (n− 1, n),

∂nu(x,t)
∂tn

if α = n.
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Lemma 1  [22] Let the function ϑ(x, t) ∈ C2(D) ∩ C0(D) 
satisfies ϑ(x, t) ≥ 0 , for (x, t) ∈ Ŵ and Lεϑ(x, t) ≥ 0 , 
∀(x, t) ∈ D . Then, ϑ(x, t) ≥ 0 , ∀(x, t) ∈ D.

The stability of the operator Lε and the ε-uniform 
boundedness for the solution of (1) is given by the fol-
lowing lemma.

Lemma 2  The ε-uniform bound on the solution u(x, t) of 
the continuous problem (1) satisfy:

where ‖u‖Ŵ is the boundedness of the solution on 
Ŵ = Ŵl ∪ Ŵr ∪ Ŵb.

Proof  By defining the barrier functions:

�u� ≤ �u�Ŵ +
||Lεu||

q
,

ϑ(x, t) = �u�Ŵ +
||Lεu||

q
± u(x, t), (x, t) ∈ D.

and using lemma 1 ends the proof. 	� �

The numerical method
Temporal discretization
Firstly, the temporal domain [0,  T] is dis-
cretized uniformly with step size �t as 
�t = {tj = j�t, j = 0, 1, 2, 3, ...,N , �t = T

N } and 
�n

℘ = {j�t, j = 0, 1, 2, 3, ...n, tn = ℘,�t = ℘

n } , where 
N is the number of mesh points in the time interval 
[0, T] which is chosen in such a way that ℘ = n�t for 
some positive integer n ∈ (0,N ) . Then, the time- frac-
tional derivative term of (1) is considered in the Caputo 

sense and at t = tj+1 , it is approximated by the follow-
ing quadrature formula:

Then, following the approach in [21], the Caputo frac-
tional derivative Dα

t u(x, t) at (x, tj+1) is approximated by:

where β =
1

(�t)αŴ(2−α)
 , bk = (k + 1)1−α

− (k)1−α and 
e
j+1
�t =

O(�t)
Ŵ(2−α)

∑j
k=0

∫ tk+1
tk

(tj+1 − τ )dτ.
Now, the application of (2) into (1) gives the semi-

discrete problem:

where, L�t
ε Uj+1(x) = −ε(Uxx(x))

j+1
+ p(x)(Ux(x))

j+1

+qj+1(x)Uj+1(x),

and Uj+1(x) is the approximation to u(x, tj+1).
The semi-discrete scheme (3) satisfy the following 

semi-discrete maximum principle.

Lemma 3  [22] Let ϑ j+1(x) be a sufficiently smooth func-
tion on the domain [0,  1] satisfying ϑ j+1(0) ≥ 0 , 

ϑ j+1(1) ≥ 0 and 
(

β + L�t
ε

)

ϑ j+1(x) ≥ 0 , ∀x ∈ [0, 1] . 

Then ϑ j+1(x) ≥ 0 , ∀x ∈ [0, 1].

Lemma 4  [21]

The local truncation error ej+1
�t  in (2) is bounded.

where C is constant independent of the perturbation 
parameter.

Dα
t u(x, tj+1) =

1

Ŵ(1− α)

∫ tj+1

0

∂u(x, τ )

∂τ
(tj+1 − τ )−τdτ .

(2)
Dα
t u(x, tj+1) = β

j
∑

k=0

bk

(

u(x, tj−k+1)− u(x, tj−k )

)

+ e
j+1

�t .

(3)


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β + L�t
ε
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Uj+1(x) = Rj+1(x),

Uj+1(x) = ψ j+1(x), for (x, tj+1) ∈ [0, 1] × [−℘, 0],

Uj+1(0) = φl(tj+1), Uj+1(1) = φr(tj+1),

Rj+1(x) =
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




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
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−rj+1(x)ψ j+1(x)+ gj+1(x)+ βUj(x)− β
�j

k=1 bk

�

Uj−k+1(x)− Uj−k(x)

�

,

for j = 1, 2, ..., n,

−rj+1(x)Uj−n+1(x)+ gj+1(x)+ βUj(x)− β
�j

k=1 bk

�

Uj−k+1(x)− Uj−k(x)

�

,

for j = n+ 1, n+ 2, ...,N ,

∣

∣

∣

∣

e
j+1
�t

∣

∣

∣

∣

≤ C(�t)2−α .
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Lemma 5  (Ref, [14]) The derivatives of the solution 
Uj+1(x) of the semi-discrete problem (3) satisfies the 
bound

Spatial discretization
Next, the domain along the spatial direction is discretized 
as: �x = {xi : xi = ih, i = 0, 1, 2, 3, ...,M} , where h =

1
M 

and M is the number of sub-intervals in [0, 1]. Then, on 
each sub-interval [xi, xi+1] , i = 0, 1, 2, ...,M − 1 , define a 
non-polynomial cubic spline of the form:

dmUj+1(x)

dxm
≤ C

(

1+ ε−m
exp(

−p(1− x)

ε
)

)

,

x ∈ [0, 1], m = 0, 1, 2, 3, 4. where ai, bi, ci and di are unknown coefficients to be 
determined and ω is free parameter that is used to raise 
the accuracy of the method. To determine the unknowns 
in (4), define the following.

Differentiating (4) successively, gives:

Now, using the relations in (5) into (4) and (6), we get:

where ωh = θ.
But, the continuity of the first derivative for the non-pol-

ynomial cubic spline at x = xi , gives:

Reducing the indexes of (7) by one and substituting into 
(8), gives:

(4)

Sj+1(x) =ai

(

eω(x−xi) + e−ω(x−xi)

)

+ bi

(

eω(x−xi) − e−ω(x−xi)

)

+ ci(x − xi)+ di,

(5)
Sj+1(xi) = U

j+1
i , S

j+1
xx (xi) = M

j+1
i ,

Sj+1(xi+1) = U
j+1
i+1 , S

j+1
xx (xi+1) = M

j+1
i+1 .

(6)
S
j+1
x (x) = ωai

(

eω(x−xi) − e−ω(x−xi)

)

+ ωbi

(

eω(x−xi) + e−ω(x−xi)

)

+ ci,

S
j+1
xx (x) = ω2ai

(

eω(x−xi) + e−ω(x−xi)

)

+ ω2bi

(

eω(x−xi) − e−ω(x−xi)

)

,

(7)

ai =
M

j+1
i

2ω2
, ci =

U
j+1
i+1 − U

j+1
i

h
−

M
j+1
i+1 −M

j+1
i

ωθ
,

bi =

2M
j+1
i+1 −M

j+1
i

(

eθ + e−θ

)

2ω2

(

eθ − e−θ

) , di = U
j+1
i −

M
j+1
i

ω2
,

(8)

ωai−1

(

e
θ
− e

−θ

)

+ ωbi−1

(

e
θ
+ e

−θ

)

+ ci−1 = 2ωbi + ci .

ω

(

M
j+1
i−1

2ω2

)(

eθ − e−θ

)

+ ω

(

2M
j+1
i −M

j+1
i−1(e

θ
+ e−θ )

2ω2(eθ − e−θ )

)(

eθ + e−θ

)

+
U

j+1
i − U

j+1
i−1

h
−

M
j+1
i −M

j+1
i−1

ωθ
= 2ω

(

2M
j+1
i+1 −M

j+1
i (eθ + e−θ )

2ω2(eθ − e−θ )

)

+
U

j+1
i+1 −U

j+1
i

h
−

M
j+1
i+1 −M

j+1
i

ωθ
.
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Simplifying and rearranging gives:

which can be rewritten as:

where �1 = 1
θ2

−
2

θ(eθ−e−θ )
 and �2 = −1

θ2
+

(eθ+eθ )
θ(eθ−e−θ )

 . Here, 
as θ → 0, �1 + �2 →

1
2 and their corresponding value is 

determined from the truncation error. That is, following 
the approach in [23], the truncation error in (9) is given 
by:

It is clear that, for the choice �1 and �2 whose sum 12 is, 
T1(h) = O(h4).

Considering the second order differential equation 
in (3) and using the relation in (5), corresponding to 
M

j+1
i = S

j+1
xx (xi) = U

j+1
xx (xi) , yields:

Substituting (10) into (9), gives:

U
j+1
i−1 − 2U

j+1
i +U

j+1
i+1

h2
=

(

1

θ2
−

2

θ(eθ − e−θ )

)

M
j+1
i−1 +

(

−2

θ2
+

2(eθ + eθ )

θ(eθ − e−θ )

)

M
j+1
i +

(

1

θ2
−

2

θ(eθ − e−θ )

)

M
j+1
i+1 ,

(9)

U
j+1

i−1
− 2U

j+1

i + U
j+1

i+1

h2
= �1M

j+1

i−1
+ 2�2M

j+1

i

+ �1M
j+1

i+1
, for i = 1, 2, 3, ...,M − 1,

T1(h) =
h4

3

(

− 2�1 + �2

)

piU
j+1

xxx (xi)

+ h4
(

1− 12�1

)

εU
j+1

xxxx(xi)+ O(h6).

(10)

− εM
j+1
i = R

j+1
i − piU

j+1
x (xi)− Q

j+1
i U

j+1
i ,

− εM
j+1
i−1 = R

j+1
i−1 − pi−1U

j+1
x (xi−1)− Q

j+1
i−1U

j+1
i−1 ,

− εM
j+1
i = R

j+1
i+1 − pi+1U

j+1
x (xi+1)− Q

j+1
i+1U

j+1
i+1 .

where Qj+1
i = q

j+1
i + β.

Consider the following finite difference approxima-
tions from [23].

Using the approximations in (11) into (10) and rearrang-
ing gives:

−ε

h2

(

U
j+1

i−1
− 2U

j+1

i + U
j+1

i+1

)

= �1

(

R
j+1

i−1
− pi−1U

j+1

x (xi−1)− Q
j+1

i−1
U

j+1

i−1

)

+

2�2

(

R
j+1

i − piU
j+1

x (xi)− Q
j+1

i U
j+1

i

)

+ �1

(

R
j+1

i+1
− pi+1U

j+1

x (xi+1)− Q
j+1

i+1
U

j+1

i+1

)

,

(11)

U
j+1
x (xi) =

U
j+1
i+1 − U

j+1
i−1

2h
,

U
j+1
x (xi−1) =

−U
j+1
i+1 + 4U

j+1
i − 3U

j+1
i−1

2h
,

U
j+1
x (xi+1) =

3U
j+1
i+1 − 4U

j+1
i + U

j+1
i−1

2h
.

Determination of the exponentially fitting factor
To overwhelm the effect of the perturbation parameter, 
we introduced an exponentially fitting factor σ to the 
term containing the perturbation parameter in (12) in 
the following form.

(12)

L
�t,h
ε U

j+1
i =

−ε

h2

(

U
j+1
i−1 − 2U

j+1
i +U

j+1
i+1

)

+
�1pi−1

2h

(

−U
j+1
i+1 + 4U

j+1
i − 3U

j+1
i−1

)

+

�2pi

h

(

U
j+1
i+1 − U

j+1
i−1

)

+
�1pi+1

2h

(

3U
j+1
i+1 − 4U

j+1
i +U

j+1
i−1

)

+ �1Q
j+1
i−1U

j+1
i−1+

2�2Q
j+1
i U

j+1
i + �1Q

j+1
i+1U

j+1
i+1 = �1R

j+1
i−1 + 2�2R

j
i + �1R

j+1
i+1, for i = 1, 2, ...,M − 1.
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Multiplying (13) by h and taking a limit as h → 0 gives:

where ρ =
h
ε
 . But, from the theory of singular pertur-

bation [24], taking the zero-order asymptotic solution 
Uj+1(x) of (3) and expanding it using Taylor’s series 
expansion about x = 0 gives:

where U0(x) is the solution of the reduced problem. 
Therefore, at x = xi , we have:

where � =

(

φr(tj+1)− U
j+1
0 (1)

)

exp(−p(1)( 1
ε
− iρ)) . 

Using (15) into (14), simplifying, rearranging and adopt-
ing the result to a variable coefficient gives:

(13)

−εσ

h2

(

U
j+1
i−1 − 2U

j+1
i + U

j+1
i+1

)

+
�1pi−1

2h

(

− U
j+1
i+1 + 4U

j+1
i − 3U

j+1
i−1

)

+

�2pi

h

(

U
j+1
i+1 − U

j+1
i−1

)

+
�1pi+1

2h

(

3U
j+1
i+1 − 4U

j+1
i +U

j+1
i−1

)

+ �1Q
j+1
i−1U

j+1
i−1+

2�2Q
j+1
i U

j+1
i + �1Q

j+1
i+1U

j+1
i+1 = �1R

j+1
i−1 + 2�2R

j
i + �1R

j+1
i+1.

(14)

−σ

ρ
lim
h→0

(

U
j+1
i−1 − 2U

j+1
i + U

j+1
i+1

)

+
�1p(1)

2
lim
h→0

(

−U
j+1
i+1 + 4U

j+1
i − 3U

j+1
i−1

)

+

�2p(1) lim
h→0

(

U
j+1
i+1 − U

j+1
i−1

)

+
�1p(1)

2
lim
h→0

(

3U
j+1
i+1 − 4U

j+1
i +U

j+1
i−1

)

= 0,

Uj+1(x) = U
j+1
0 (x)+

(

φr(tj+1)− U
j+1
0 (1)

)

exp

(

−p(1)(1− x)

ε

)

+ O(ε),

(15)


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





























limh→0

�

U
j+1
i−1 − 2U

j+1
i + U

j+1
i+1

�

= �

�

exp(p(1)ρ)− 2+ exp(−p(1)ρ)

�

,

limh→0

�

− U
j+1
i+1 + 4U

j+1
i − 3U

j+1
i−1

�

= �

�

− exp(p(1)ρ)+ 4 − 3 exp(−p(1)ρ)

�

,

limh→0

�

3U
j+1
i−1 − 4U

j+1
i +U

j+1
i+1

�

= �

�

3 exp(p(1)ρ)− 4 + exp(−p(1)ρ)

�

,

limh→0

�

U
j+1
i+1 − U

j+1
i−1

�

= �

�

exp(p(1)ρ)− exp(−p(1)ρ)

�

,

(16)σi = ρpi(�1 + �2) coth

(

ρpi

2

)

.

Following the approach in [21], we have:

(17)ε

(

ρpi(�1 + �2) coth

(

ρpi

2

)

− 1

)

≤
h2

h+ ε
.

The full discrete scheme
Now, inducing the exponential fitting factor obtained in 
(16) into (12), the full discrete scheme is given as:

where,
(18)

L
�t,h
ε U

j+1

i = �1R
j+1

i−1
+ 2�2R

j+1

i + �1R
j+1

i+1
, for i = 1, 2, ...,M − 1,

R
j+1
i =















−r
j+1
i ψ

j+1
i + g

j+1
i + βU

j
i − β

�j
k=1 bk

�

U
j−k+1
i −U

j−k
i

�

, for j = 1, 2, ..., n,

−r
j+1
i U

j−n+1
i + g

j+1
i + βU

j
i − β

�j
k=1 bk

�

U
j−k+1
i −U

j−k
i

�

, for j = n+ 1, n+ 2, ...,N ,
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which can be rewritten in a three term recurrence rela-
tion as:

where,

L
�t,h
ε U

j+1
i =

−εσi

h2

(

U
j+1
i−1 − 2U

j+1
i + U

j+1
i+1

)

+
�1pi−1

2h

(

− U
j+1
i+1 + 4U

j+1
i − 3U

j+1
i−1

)

+

�2pi

h

(

U
j+1
i+1 − U

j+1
i−1

)

+
�1pi+1

2h

(

3U
j+1
i+1 − 4U

j+1
i +U

j+1
i−1

)

+

�1Q
j+1
i−1U

j+1
i−1 + 2�2Q

j+1
i U

j+1
i + �1Q

j+1
i+1U

j+1
i+1 ,

(19)

̥
−

i U
j+1

i−1
+̥

0
i U

j+1

i +̥
+

i U
j+1

i+1
= H

j+1

i ,

for i = 1, 2, 3, ...,M − 1,

̥
−

i =
−εσi

h2
−

3�1pi−1

2h
−

�2pi

h
+

�1pi+1

2h
+ �1Q

j+1
i−1,

̥
0
i =

2εσi

h2
+

2�1pi−1

h
−

2�1pi+1

h
+ 2�2Q

j+1
i ,

̥
j+1
i =

−εσi

h2
−

�1pi−1

2h
+

�2pi

h
+

3�1pi+1

2h
+ �1Q

j+1
i+1,

H
j+1
i = �1R

j+1
i−1 + 2�2R

j+1
i + �1R

j+1
i+1.

Stability and uniform convergence analysis
The following lemma guarantee the existence of a 
unique discrete solution for the scheme in (18).

Lemma 6  [24](Discrete comparison principle) Suppose 
L�t,h
ε U

j+1
i ≤ L�t,h

ε V
j+1
i  , for 1 ≤ i ≤ M − 1 , such that 

U
j+1
0 ≤ V

j+1
0  and Uj+1

M ≤ V
j+1
M  . Then, Uj+1

i ≤ V
j+1
i  , for 

i = 1(1)M.

Lemma 7  The solution Uj+1
i  of the full discrete problem 

in (18) at each (j + 1)th time level satisfies the bound:

where, Qj+1
i ≥ ϒ > 0.

Proof  Define the barrier functions ϑ±

i,j+1 = �±U
j+1
i  , 

where � =
||L

�t,h
ε U

j+1
i ||

ϒ
+max{|φl(tj+1)|, |φr(tj+1)|} . Then 

ϑ
±

0,j+1 = �± U
j+1
0 ≥ 0 , and ϑ±

M,j+1 = �± U
j+1
M ≥ 0.

Moreover, for 1 ≤ i ≤ M − 1 , we have

|U
j+1
i | ≤

||Lh,�t
ε U

j+1
i ||

ϒ
+max{|φl(tj+1)|, |φr(tj+1)|}

L
�t,h
ε ϑ

±

i,j+1 =
−εσi

h2

(

ϑ
±

i−1,j+1 − 2ϑ±

i,j+1 + ϑ
±

i+1,j+1

)

+
�1pi−1

2h

(

− ϑ
±

i+1,j+1 + 4ϑ±

i,j+1 − 3ϑ±

i−1,j+1

)

+

�2pi

h

(

ϑ
±

i+1,j+1 − ϑ
±

i−1,j+1

)

+
�1pi+1

2h

(

3ϑ±

i+1,j+1 − 4ϑ±

i,j+1 + ϑ
±

i−1,j+1

)

+

�1Q
j+1
i−1ϑ

±

i−1,j+1 + 2�2Q
j+1
i ϑ

±

i,j+1 + �1Q
j+1
i+1ϑ

±

i+1,j+1,

=

(

�1Q
j+1
i−1 + 2�2Q

j+1
i + �1Q

j+1
i+1

)

�± L
�t,h
ε U

j+1
i ,

≥2ϒ(�1 + �2)�± L
�t,h
ε U

j+1
i , since Q

j+1
i ≥ ϒ > 0, for i = 1(1)M − 1,

≥ϒ�± L
�t,h
ε U

j+1
i , since �1 + �2 =

1

2
,

≥ϒ

(

||Lh,�t
ε U

j+1
i ||

ϒ
+max{|φl(tj+1)|, |φr(tj+1)|}

)

± L
�t,h
ε U

j+1
i ,

≥0.
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Then, the application of lemma  6 results 
ϑ
±

i,j+1 ≥ 0, ∀i = 0(1)M . Therefore, the desired bound 
hold. 	�  �

Lemma 8  (Ref [16]). Let M be a fixed mesh number. 
Then, for ε → 0 , the following holds:

where xi = ih, h =
1
M , ∀i = 1, 2, 3, ...,M − 1.

The following are an input in proving the next theo-
rem. That is applying Taylor series expansion about 
x = xi , we have:

Lemma 9  Let Uj+1(x) be the solution of the semi-dis-
crete problem in (3) and Uj+1

i  is the solution of the full 
discrete problem in (18). Then, the following error bound 
hold.

Proof  Consider the truncation error:

Further, rearranging gives:

lim
ε→0

max
1≤i≤M−1

ε−m exp(
−p(1− xi)

ε
) = 0, m = 1, 2, 3, ...,

(20)

∣

∣

∣

∣

−

(

d2

dx2
− δ2x

)

Uj+1(xi)

∣

∣

∣

∣

≤ Ch2
∣

∣

∣

∣

d4Uj+1(xi)

dx4

∣

∣

∣

∣

,

∣

∣

∣

∣

dUj+1(xi−1)

dx
−

(

−U
j+1
i+1 + 4U

j+1
i − 3U

j+1
i−1

2h

)∣

∣

∣

∣

≤ Ch2
∣

∣

∣

∣

d3Uj+1(xi)

dx3

∣

∣

∣

∣

,

∣

∣

∣

∣

dUj+1(xi+1)

dx
−

(

3U
j+1
i+1 − 4U

j+1
i + U

j+1
i−1

2h

)
∣

∣

∣

∣

≤ Ch2
∣

∣

∣

∣

d3Uj+1(xi)

dx3

∣

∣

∣

∣

,

∣

∣

∣

∣

(

d

dx
− δ0x

)

Uj+1(xi)

∣

∣

∣

∣

≤ Ch2
∣

∣

∣

∣

d3Uj+1(xi)

dx3

∣

∣

∣

∣

,

∣

∣

∣

∣

L
h,�t
ε

(

Uj+1(xi)−U
j+1
i

)∣

∣

∣

∣

≤
Ch2

ε + h
.

∣

∣

∣

∣

L
h,�t
ε

(

Uj+1(xi)− U
j+1
i

)∣

∣

∣

∣

≤

∣

∣

∣

∣

ε

(

d2

dx2
− σiδ

2
x

)

Uj+1(xi)+

�1p(xi−1)

(

d

dx
Uj+1(xi−1)−

(

−3U
j+1
i−1 + 4U

j+1
i −U

j+1
i+1

2h

))

+

2�2p(xi)

(

d

dx
− δ0x

)

Uj+1(xi)

∣

∣

∣

∣

+

�1p(xi+1)

(

d

dx
Uj+1(xi+1)−

(

3U
j+1
i−1 − 4U

j+1
i + U

j+1
i+1

2h

))

+

∣

∣

∣

∣

T1(h)

∣

∣

∣

∣

.
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Using the bounds in (17) and (20) gives:

The application of lemma 5 gives:

Therefore, the application of lemma 8 gives the required 
bound. 	�  �

Theorem 1  The discrete solution Uj+1
i  of the problem in 

(18), satisfies the following error bound.

∣

∣

∣

∣

L
h,�t
ε

(

Uj+1(xi)−U
j+1
i

)∣

∣

∣

∣

≤

∣

∣

∣

∣

ε

(

σi − 1

)

δ2xU
j+1(xi)

∣

∣

∣

∣

+

∣

∣

∣

∣

ε

(

d2

dx2
− δ2x

)

Uj+1(xi)

∣

∣

∣

∣

+

∣

∣

∣

∣

�1p(xi−1)

(

d

dx
Uj+1(xi−1)−

(

−3U
j+1
i−1 + 4U

j+1
i −U

j+1
i+1

2h

))
∣

∣

∣

∣

+

∣

∣

∣

∣

2�2p(xi)

(

d

dx
− δ0x

)

Uj+1(xi)

∣

∣

∣

∣

+

∣

∣

∣

∣

�1p(xi+1)

(

d

dx
Uj+1(xi+1)−

(

3U
j+1
i−1 − 4U

j+1
i + U

j+1
i+1

2h

))∣

∣

∣

∣

+

∣

∣

∣

∣

T1(h)

∣

∣

∣

∣

,

∣

∣

∣

∣

L
h,�t
ε

(

Uj+1(xi)−U
j+1
i

)∣

∣

∣

∣

≤
h2

ε + h

∣

∣

∣

∣

∣

∣

∣

∣

d2Uj+1(xi)

dx2

∣

∣

∣

∣

∣

∣

∣

∣

+ Cεh2
∣

∣

∣

∣

∣

∣

∣

∣

d4Uj+1(xi)

dx4

∣

∣

∣

∣

∣

∣

∣

∣

+

Ch2
∣

∣

∣

∣

∣

∣

∣

∣

d3Uj+1(xi)

dx3

∣

∣

∣

∣

∣

∣

∣

∣

+ Ch4
(

− 2�1 + �2

)∣

∣

∣

∣

∣

∣

∣

∣

d3Uj+1(xi)

dx3

∣

∣

∣

∣

∣

∣

∣

∣

+

Cεh4
(

1− 12�1

)
∣

∣

∣

∣

∣

∣

∣

∣

d3Uj+1(xi)

dx3

∣

∣

∣

∣

∣

∣

∣

∣

.

∣

∣

∣

∣

L
h,�t
ε

(

Uj+1(xi)−U
j+1
i

)∣

∣

∣

∣

≤
Ch2

ε + h

(

1+ ε−2 exp

(

−p(1− xi)

ε

))

+

Cεh2
(

1+ ε−4 exp

(

−p(1− xi)

ε

))

+

Ch2
(

1+ ε−3 exp

(

−p(1− xi)

ε

))

+

Ch4
(

− 2�1 + �2

)(

1+ ε−3 exp

(

−p(1− xi)

ε

))

+

Cεh4
(

1− 12�1

)(

1+ ε−3 exp

(

−p(1− xi)

ε

))

,

≤
Ch2

ε + h

(

1+ ε−3 exp

(

−p(1− xi)

ε

))

, since ε−3
≥ ε−2

sup
0<ε≤1

max
xi∈[0,1]

∣

∣

∣

∣

Uj+1(xi − U
j+1
i )

∣

∣

∣

∣

≤ CM−1,

where C is a positive constant independent of the pertur-
bation parameter ε.

Proof  Note that from lemma 9, as ε → 0 , h
2

h+ε
→ CM−1 , 

since h =
1
M . Then, the application of lemma  6 in to 

lemma 9 gives the required bound. 	� �

Here, whenever ε > h , the obtained method gives 
a second-order uniformly convergent. On the other 
hand, when ε ≪ h the method is first order uniformly 
convergent in the space direction.
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Theorem  2  Let u(xi, tj) be the solution of the problem 
(1) and Uj+1

i  be the solution of the full discrete scheme 
(18). Then,

Proof  The result of this theorem holds form the trian-
gular property of norm, the error bounds in lemma 4 and 
theorem 1. 	�  �

Numerical result and discussion
To validate the main result of our work, the following 
three model examples are considered.

Example 1  We considered the following time-frac-
tional singularly perturbed problem which is taken from 
[22]:

sup
0<ε≤1

∣

∣

∣

∣

∣

∣

∣

∣

U(xi)−U
j+1
i

∣

∣

∣

∣

∣

∣

∣

∣

D

≤ C

(

M−1
+ (�t)2−α

)

.











Dαu(x, t)− εuxx(x, t)+ (2− x2)ux(x, t)+ (x + 1)(t + 1)u(x, t) = u(x, t − 1)+ 10t2 exp(−t)x(1− x),
for, (x, t) ∈ (0, 1)× (0, 2],

u(x, t) = 0, for (x, t) ∈ [0, 1] × [−1, 0],
u(0, t) = 0, u(1, t) = 0, for t ∈ [0, 2].

Table 1  Comparison of maximum absolute error for Example 1 
for a fixed ε = 2

−10 , �1 = 1

12
 , �2 = 5

12
 and different values of α

α ↓ (M,N) → (16, 20) (32, 40) (64, 80) (128, 160)

Present Method

 0.25 5.6815e-03 3.2103e-03 1.6913e-03 8.3490e-04

 0.5 5.9931e-03 3.3544e-03 1.7670e-03 8.7197e-04

 0.75 6.4909e-03 3.5928e-03 1.8946e-03 9.3501e-04

Result in [20]

 0.25 1.1726e-02 6.3654e-02 3.3194E-02 1.6943e-03

 0.5 1.2246e-02 6.6457e-03 3.4625e-03 1.7661e-03

 0.75 1.3012e-02 7.0750e-03 3.6857e-03 1.8785e-03

Table 2  Comparison of maximum absolute error of Example 1 
for a fixed α = 0.5 , �1 = 1

12
 , �2 = 5

12
and different values of ε

ε = 2−k ↓

/(M,N) →

(16,20) (32,40) (64,80) (128,160)

Present method

 k=6 4.4305e-03 1.4685e-03 3.9700e-04 1.0233e-04

 k=8 5.9888e-03 3.2323e-03 1.3387e-03 4.0971e-04

 k=10 5.9931e-03 3.3544e-03 1.7670e-03 8.7197e-04

 k=12 5.9931e-03 3.3544e-03 1.7682e-03 9.0458e-04

 k=15 5.9931e-03 3.3544e-03 1.7682e-03 9.0458e-04

 k=20 5.9931e-03 3.3544e-03 1.7682e-03 9.0458e-04

Result in [20]

 k=6 1.0088e-02 4.9401e-03 2.0143e-03 7.1385e-04

 k=8 1.1863E-02 6.3546E-03 3.3404E-03 1.8221E-03

 k=10 1.2246e-02 6.6457e-03 3.4625e-03 1.7661e-03

 k=12 1.2336E-02 6.7141E-03 3.5082E-03 1.7930E-03

 k=15 1.2361e-02 6.7337e-03 3.5212e-03 1.8011e-03

 k=20 1.2365e-02 6.7364e-03 3.5230e-03 1.8022e-03

Table 3  Maximum absolute error, uniform error and uniform 
rate of convergence of Example 2 for a fixed α = 0.5 , �1 = 1

12
 , 

�2 =
5

12
 and different values of ε

ε = 2−k ↓

/(M,N) →

(16,16) (32,32) (64,64) (128,1128) (256,256)

2
−4 2.7763e-

03
7.0255e-
04

1.8434e-
04

4.9688e-05 1.3696e-05

2
−6 1.0220e-

02
3.4939e-
03

8.2988e-
04

2.1462e-04 5.4950e-05

2
−8 1.2966e-

02
7.1656e-
03

3.1097e-
03

9.6066e-04 2.2330e-04

2
−10 1.2973e-

02
7.3879e-
03

3.9419e-
03

1.9756e-03 7.7086e-04

2
−12 1.2973e-

02
7.3879e-
03

3.9441e-
03

2.0366e-03 1.0336e-03

2
−14 1.2973e-

02
7.3879e-
03

3.9441e-
03

2.0366e-03 1.0341e-03

2
−16 1.2973e-

02
7.3879e-
03

3.9441e-
03

2.0366e-03 1.0341e-03

E
M,N 1.2973e-

02
7.3879e-
03

3.9441e-
03

2.0366e-03 1.0341e-03

R
N,M 0.8123 0.9055 0.9535 0.9778 -
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Example 2  We considered the following time-frac-
tional singularly perturbed problem which is taken from 
[22]:

Example 3  We considered the following time-frac-
tional singularly perturbed problem which is taken from 
[22]:











Dαu(x, t)− εuxx(x, t)+ (2− x2)ux(x, t)+ xu(x, t) = u(x, t − 1)+ 10t2 exp(−t)x(1− x),
for, (x, t) ∈ (0, 1)× (0, 2],

u(x, t) = 0, for (x, t) ∈ [0, 1] × [−1, 0],
u(0, t) = 0, u(1, t) = 0, for t ∈ [0, 2].











Dαu(x, t)− uxx(x, t)+ ux(x, t) =
2t2−α

Ŵ(3−α)
+ 2x − 2, for, (x, t) ∈ (0, 1)× (0, 1],

u(x, 0) = x2, for x ∈ [0, 1],

u(0, t) = t2, u(1, t) = 1+ t2, for t ∈ [0, 1].

The exact solution of the first two model examples 
is not known. As a result, double mesh principle is 
applied to compute the maximum absolute error using:

and the corresponding uniform error estimate is obtained 
by: EM,N

= maxε(E
M,N
ε ) . Finally, the uniform rate of con-

vergence is calculated using:

 However, the exact solution of the third model example 
is known and it is given by u(x, t) = x2 + t2 . Hence, the 
maximum absolute error is found by using:

EM,N
ε = max

i,j

∣

∣

∣

∣

UM,N (xi, tj)− U2M,2N (x2i, t2j)

∣

∣

∣

∣

,

RM,N
=

log(EM,N )− log(E2M,2N )

log 2
.

Table 4  Comparison of maximum absolute error for Example 3 
for a fixed ε = 1 , �1 = 1

12
 , �2 = 5

12
 and different values of α and

α ↓ (M,N) → (16, 16) (32, 32) (64, 64) (128, 128)

Present method

 0.25 6.2801e-04 1.6545e-04 4.3996e-05 1.1828e-05

 0.5 1.0742e-03 3.4815e-04 1.3367e-04 5.3069e-05

 0.75 2.6933e-03 1.0857e-03 4.4332e-04 1.9557e-04

Result in [20]

 0.25 7.4538E-04 2.2828E-04 6.9461E-05 2.1047E-05

 0.5 2.3962E-03 8.5395E-04 3.0333E-04 1.0759E-04

 0.75 6.3731E-03 2.6801E-03 1.1263E-03 4.7338E-04

Fig. 1  Surface plot of Example 1 for ε = 2
−12 , α = 0.5 , M = 64 

and N = 80

Fig. 2  Surface plot of Example 2 for ε = 2
−12 , α = 0.5 , M = 64 

and N = 80
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where, u(x, t) is the exact solution.
The first two model examples involves an arbitrary 

fractional order derivative α , a large temporal lag of mag-
nitude ℘ = 1 and a singular perturbation parameter ε 
multiplying the term containing highest derivative. Due 
the presence of ε , the solutions of the considered model 
examples exhibit a strong boundary layer at the right 
end point of the spatial domain whenever the value of ε 
approaches to 0 as it is depicted in figures 1 and 2, respec-
tively, for example 1 and 2. The large temporal lag doesn’t 
have an effect on the position and size of the boundary 
layer since the layer occur along the spatial domain only.

The maximum absolute error of the proposed method 
for each example is computed taking �1 = 1

12 and 
�2 =

5
12 . The comparison of maximum absolute error 

of Example 1 for the present method with the method 
developed in [20], with a fixed value of ε and different 
values of α , is presented in Table  1. The result in this 
table depict that, the proposed method is more accu-
rate than, the method in the literature. The compari-
son of the proposed method with the method in [20] 
in maximum absolute error, for Example  1 with a dif-
ferent values of ε and a fixed α is presented in Table 2. 
Again the result in this table also indicate that, the 
proposed method is convergent and more accurate 
than the result presented in [20]. The numerical result 
in Table  3 also indicate the maximum absolute error 
of Example  2 for different values of the perturbation 
parameter ε and a fixed value of α . From the result in 
this table, as the perturbation goes smaller and smaller, 
the maximum absolute error of the proposed method 
becomes stable and identical after showing some grow 
up indicating that, the proposed method is ǫ-uniform 
or uniformly convergent. Again, from the last rows of 
this table, we can clearly observe that, the proposed 
method is first order which is in agreement with the 
theoretical expectation. The comparison of maximum 
absolute error of Example  3 for the present method, 
with the method developed in [20], with a fixed value 
ε = 1 and different values of α , is presented in Table 4. 
The result in this table shows that the proposed method 
is more accurate than the result found in the literature. 
Figure 1 and Fig. 2 shows the solution profile of Exam-
ple 1 and Example 2 for ε = 2−12 , M = 64 , N = 80 and 
α = 0.5 , respectively. From the figures, one can observe 
that the numerical solution of the governing problem 
forms a strong right boundary layer as the perturbation 
becomes smaller and smaller.

EM,N
ε = max

i,j

∣

∣

∣

∣

uM,N (xi, tj)− UM,N (xi, tj)

∣

∣

∣

∣

,
Conclusion
In this paper, an exponentially fitted non-polynomial 
cubic spline method is proposed for solving time-frac-
tional singularly perturbed convection-diffusion prob-
lems involving large temporal lag. The time-fractional 
derivative is considered in the Caputo sense and dis-
cretized uniformly using the implicit finite difference 
techniques. Then, an exponentially fitted non-poly-
nomial cubic spline method is constructed along the 
spatial domain on a uniform mesh discretization. The 
ε-uniform convergence of the proposed method has 
rigorously proved and shown to be convergent with 
order of convergence O((�t)2−α

+M−1) . The proposed 
method is validated using two model examples and 
the experimental result is in agreement with the theo-
retical expectation. Moreover, the proposed method 
gives more accurate solution than some recent existing 
methods.

Limitations
The developed method is not layer resolving method 
since there is no sufficient number of mesh points in 
the boundary layer region.
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