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Abstract 

Objectives The control chart is a classic statistical technique in epidemiology for identifying trends, patterns, 
or alerts. One meaningful use is monitoring and tracking Infant Mortality Rates, which is a priority both domestically 
and for the World Health Organization, as it reflects the effectiveness of public policies and the progress of nations. 
This study aims to evaluate the applicability and performance of this technique in Brazilian cities with different popu-
lation sizes using infant mortality data.

Results In this article, we evaluate the effectiveness of the statistical process control chart in the context of Brazil-
ian cities. We present three categories of city groups, divided based on population size and classified according 
to the quality of the analyses when subjected to the control method: consistent, interpretable, and inconsistent. 
In cities with a large population, the data in these contexts show a lower noise level and reliable results. However, 
in intermediate and small-sized cities, the technique becomes limited in detecting deviations from expected behav-
iors, resulting in reduced reliability of the generated patterns and alerts.

Keywords Brazil, Infant mortality, Diagnosis of health situation, Statistical process control, Control chart, Routinely 
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Introduction
Health situation analysis plays a crucial role in under-
standing the health status of populations and identify-
ing their priority needs [1]. Given Brazil’s demographic, 
geographic, and socioeconomic diversity, cities are mark-
edly different. Identifying these specificities and needs 

becomes paramount to ensure equitable healthcare for 
the population, regardless of their region of residence [2].

Indicators are measures usually adopted to monitor 
the health system throughout time. Due to their tempo-
ral patterns, time series are a powerful tool in epidemi-
ology [3]. They are used in studies to forecast epidemic 
outbreaks [4], analyze disease trends or seasonality [5] 
and monitor and identify anomalies [6]. The statisti-
cal process Control Chart (CC) is a classic technique to 
establish acceptable values for indicators. This technique 
represents a widely employed statistical tool in quality 
management, control of epidemiological processes, and 
decision support. It enables monitoring of possible devia-
tions, anomalies, trends, and seasonality. Unfitted values 
sign the need for specific interventions to improve the 
indicators for this population [7].
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Among the various indicators that measure the qual-
ity of life of a population, Infant Mortality Rate (IMR) 
is one of the national and international priorities. This 
indicator estimates the risk of death of a child in their 
first year of life per thousand live births. In addition to 
reflecting the socioeconomic development of a coun-
try, the IMR highlights access to health for children and 
their families, as well as the effectiveness of interven-
tions and public policies [8]. It plays a crucial role as 
an essential alert for epidemics, disease outbreaks, or 
humanitarian emergencies.

The CC [6] applied to IMRs enables identifying areas 
with higher vulnerability and inequalities, contributing 
to formulating more targeted and practical strategies 
to improve population health. This method determines 
the moment of action, generating an alert in the face 
of behavioral changes. Moreover, it enables a preven-
tive approach focused on promoting maternal and child 
health and implementing measures to improve the qual-
ity of life for children, thus guaranteeing a healthier 
future for the entire society [9].

When considering the principles of universality and 
equity within Brazil’s Unified Health System (SUS), it is 
imperative to prioritize equal access to healthcare ser-
vices for all cities and effective care for vulnerable pop-
ulations [10]. This approach is essential to ensure that 
every community receives fair and equitable healthcare. 
Our study aims to evaluate the applicability and perfor-
mance of the statistical process CC across Brazilian cities 
with different population sizes, utilizing IMR as the criti-
cal metric.

Methods
The time series analysis used the infant mortality data-
set from two major studies [11–13]. These datasets hold 
interoperable data on disease incidence, hospitaliza-
tion, primary health care, vaccination, and breastfeeding 
[13]. The dataset gathers official and public information 
from the Live Birth Information System (SINASC) and 
the Mortality Information System (SIM) of the Brazil-
ian Ministry of Health. Data extraction and processing 
occurred in August 2023. It included 31,416 infant deaths 
and 2,730,050 live births from 2009 to 2020.

They were temporal aggregated by municipalities 
according to months. Equation 1 describes the aggrega-
tion where yj is the aggregated observations computed as 
the mean of the original m observations associated with 
j. This aggregation approach enables summarizing daily 
observations and analyzing data on a broader temporal 
scale, such as weekly ( m = 7) or monthly ( m = 30 ), facili-
tating the identification of long-term trends and signifi-
cant patterns.

The IMR is our selected indicator, calculated by the 
number of deaths of children under 1 year per 1,000 live 
births. Thus, the CC was built for all cities. It is neces-
sary to remove epidemic periods to build the CC. While 
assuming a normal distribution, four steps are applied: 

1. Definition of the study year;
2. Calculation of the monthly (or weekly) average (MD) 

for the ten years before the study year;
3. Calculation of the monthly (or weekly) standard 

deviation (SD) for the ten years before the study year;
4. Calculation of the upper and lower con-

trol limits. Typical observations fall between 
[x̄ − 1.96σ , x̄ + 1.96σ ] , representing 95% of the val-
ues in a normal distribution [14].

With all the values at hand, one can represent the graph 
and analyze the behavior of the observed values (study 
year) about the expected values and calculated limits.

The Brazilian cities were grouped into six popula-
tion size categories according to the official classifica-
tion of the Brazilian Institute of Geography and Statistics 
(IBGE) [15]. This classification helps to measure the per-
formance of the CC for the groups. Each group can be 
classified into one of three categories presented in the 
results section: consistent, subject to interpretation, and 
inconsistent.

We automated all data processing and analysis using 
the free and open software R. The codes can be audited, 
replicated, and reused for alternative analysis. The pro-
portion of missing data is < 0.01%.

Results
The IBGE classifies Brazilian cities into six groups, vary-
ing according to population size (Table  1). It shows the 
total population (Tot. pop.), number of cities, live births, 
infant deaths, and the IMR (both mean and standard 
deviation) for each group. Due to differences in size and 
socioeconomic challenges in Brazil, each group has dif-
ferent characteristics, such as hospital and primary care 
structures.

For small cities, it is possible to observe more heteroge-
neity for IMR, where the SD equals 15.4. Generally, cities 
fall below the World Health Organization (WHO) target 
(12 per thousand live births [16]), while some are far from 
it. On the other hand, we find a reasonably homogeneous 
group when analyzing the IMR for the 49 largest cities in 
the country. Its mortality rate has an SD of 3.1, indicating 
that most cities have IMRs close to the MD of 11.6.

(1)yj =

m.j∑

t=m(j−1)+1

xt

m
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In this way, the SD of IMR proxies the applicability 
of the analysis of CC for the group of cities. The classi-
fication column of Table  1 represents it as consistent, 
interpretable, and inconsistent. Larger cities enable con-
sistent adoption of CC. The method produces consistent 
results for some groups where the literature traditionally 
applies them, as seen in [17]. Conversely, smaller cities 
do not enable the direct adoption of CC. To this extent, 
the group was classified as inconsistent. It is critical since 
44% of Brazilian cities are present in this group. Other 
groups were classified as interpretable with a certain 
degree between consistent and inconsistent according 
to the standard deviation of IMR. Interpretable are cit-
ies that might use CC with certain visual inspections to 
confirm problems.

Consistent group
In this scenario, there is a clear indication of great utili-
zation of the CC methodology. This behavior is observed 
in large cities with more than 100,000 inhabitants, such 
as Rio de Janeiro - RJ. Historically, this city has a large 
population volume, which generates data stability. With 
consistent data, in Fig. 1(A1), it is possible to analyze and 
identify patterns, such as the decrease in IMR from 14 
per thousand live births to 12 per thousand live births, 
through the annual MD. There is also high oscillation in 
the monthly data over time. In Fig. 1(A2), by applying the 
CC, it is possible to identify the months with the highest 
and lowest mortality rates through the expected value—
month six had the highest mortality, and month nine had 
the lowest. Additionally, the established limits for the city 
were determined. Interestingly, month three, which had 
the lowest degree of available oscillation, was precisely 
the month that showed an anomalous behavior when the 
observed value exceeded the upper expected limit. This 
point requires action or investigation by the competent 
authorities.

Interpretable group
This group comprises situations where the results indi-
cate warning signs, but their interpretation enables 

various analyses. Typically, this group includes cities of 
intermediate population size, such as Campo Mourão—
PR. Due to population characteristics, there is a sig-
nificant fluctuation in mortality data over the years. 
Although annual data remains stable, monthly data 
fluctuates between 0 and 40 per thousand live births, as 
seen in Fig.  1(B1). In the control analysis, in Fig.  1(B2), 
points where the observed value exceeds the upper 
limit may not necessarily represent a real alert, but they 
raise doubts. If there was a lower number of births in 
that month while the number of infant deaths remained 
constant, it is possible to have a false positive. This diag-
nosis requires an additional analysis of the absolute num-
bers and an understanding of whether there are other 
anomalies.

Inconsistent group
The inconsistent group is observed in cities with medium 
and low population volumes, such as Diamante do Sul 
- PR and Gonçalves Dias - RS. Two behaviors fall into 
this category. Firstly, there are cities with minimal infant 
mortality history, with one or two cases per year, as 
exemplified in Fig. 1(C1). In these locations, the absence 
of a historical average and predefined limits generates 
inconsistency, as there is no basis for comparison. Fig-
ure 1(C2) exemplifies this phenomenon because this city 
had no infant deaths for several years. When deaths do 
occur, the numbers reach incredibly high levels, leading 
to inconsistent alerts and extremely high mortality rates. 
The alert in month two in Fig.  1(C2) was generated by 
one infant death out of two for the year.

Secondly, cities with available mortality history but 
with measured values are highly susceptible to rapid 
fluctuations, as shown in Fig.  1(D1). The monthly IMR 
oscillates between 0 and 130 deaths per thousand live 
births. In practice, a single additional or fewer births or 
infant deaths can cause the mortality rate to exhibit such 
behavior. In the case of Gonçalves Dias in Fig. 1(D2), it is 
possible to identify the trend of months with the highest 
and lowest historical volume of infant deaths, despite the 
IMR values assuming values outside the expected range 

Table 1 Profile of the Brazilian cities in 2020

Population size groups Tot. Pop. Cities Live births Infant deaths IMR ( MD ± SD) Classification

10,000 or less 12,733,775 (6%) 2,449 (44%) 150,928 (5.5%) 1,746 (5.6%) 10.8 ± 15.4 Inconsistent

10,001 to 20,000 19,023,018 (9%) 1,332 (24%) 240,720 (8.8%) 3,003 (9.6%) 12.3 ± 9.1 Interpretable/inconsistent

20,001 to 50,000 33,869,025 (16%) 1,112 (20%) 454,977 (16.7%) 5,646 (18%) 12.3 ± 6.7 Interpretable

50,001 to 100,000 24,150,300 (11.4%) 351 (6%) 332,265 (12.3%) 3,699 (11.8%) 11.0 ± 4,7 Consistent/interpretable

100,001 to 500,000 54,457,315 (25.7%) 277 (5%) 731,937 (26.8%) 8,039 (25.6%) 10.9 ± 3,1 Consistent

500,000 or more 67,522,259 (31.9%) 49   (1%) 819,223 (30%) 9,283 (29.5%) 11.6 ± 3.1 Consistent
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(caused by monthly fluctuations). The alert for month 
two in Fig.  1(D2) is caused by two infant deaths out of 
three for that year. Once again, this demonstrates the vul-
nerability of the method to changes in absolute numbers.

Discussions
Understanding past patterns and behaviors is crucial in 
epidemiological studies, including the analysis of infant 
mortality. However, when applying the CC technique to 
municipal scenarios, reliable results are only achieved for 
large cities with more stable data, representing just 6% 
of all municipalities, as shown in Table 1. The remaining 
94% of municipalities face challenges with partially inter-
pretable or inconsistent results. This difficulty arises from 
identifying value combinations that lead to changes in 
classification.

Traditionally, alternative approaches such as spatial 
or temporal aggregation have been used to overcome 
these issues. The spatial collection provides a compre-
hensive view of trends at state or macro-geographical 
levels but fails to capture intrinsic city characteristics 

[17]. Temporal aggregation examines data over quar-
ters, semesters, or years, enabling the analysis of 
changes over time but losing the opportunity to address 
specific events in individual municipalities [7].

Discovering an adequate and balanced approach to 
tackling this complexity is crucial to ensure fair and 
unbiased analysis for all cities, regardless of their popu-
lation size. By breaking the current invisibility in which 
many of these cities are submerged, we contribute to 
preserving the SUS principles and promoting equal 
treatment among locations. It is particularly relevant in 
crises, where the prompt action of competent authori-
ties plays a fundamental role in containing extreme 
situations. Moreover, considering that cities with up to 
20,000 inhabitants mainly obtain inconsistent results 
when subjected to the technique, as shown in Table 1, 
they represent 68% of the Brazilian municipalities. In 
other words, more than half of the country’s cities are 
subject to inconsistent analysis of infant mortality or 
other important indicators for societal development 

Fig. 1 Historical Trend and CC of IMR for four Brazilian Municipalities. - Observed year: 2020—Limits (SD) and average (MD): 2009–2019
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(ODS 3 [18]), such as tuberculosis and malaria, due to 
the inconsistency of the method in smaller cities.

While few studies use the CC technique for epidemic 
analysis at the municipal level [19], efforts should be 
made to adapt and improve the method for low popu-
lation volumes and high data fluctuations. Alternative 
approaches like automated model selection for epidemic 
analysis [20] and Bayesian analysis for low-granularity 
area data [21] present possibilities but require further 
testing. This article reveals the potential for techniques to 
address the gaps presented.

A thorough exploration of data and methods can 
enhance understanding of IMRs in diverse cities, ena-
bling proactive and effective analytical efforts to promote 
health and well-being in vulnerable communities. How-
ever, this paper aims to shed light on the need for a bal-
anced approach to analyzing infant mortality, considering 
the limitations of the CC technique in smaller cities. It is 
crucial for fair and unbiased analysis and proactive health 
improvement initiatives in vulnerable communities.

Limitations

• The SINASC and SIM, used to collect live births and 
deaths data, have variable coverages over time and 
across geographic units - i.e., lower at the beginning 
of historical series and underserved areas. Neverthe-
less, overall SINASC and SIM coverages are high at 
98% and 96%, respectively.

• The method does not consider the growth, stability, 
or decline trend.

• The epidemic channel limits are dependent on the 
time window.
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