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Abstract
Background and objectives Of the genes conferring resistance to carbapenems in Acinetobacter baumannii, the 
blaOXA−23 gene is the most widely found across the world. The gene carrying blaOXA−23 transposons in A. baumannii 
isolates of global clones GC1 and GC2 is found worldwide. Here, we examined whether transposons play a role in the 
dissemination of the blaOXA−23 in globally distributed clones, GC1 and GC2 A. baumannii isolates from Iraq.

Materials and methods The 119 non-repetitive A. baumannii isolates including 94 recovered from clinical specimens 
and 25 isolates from hospital environment between September 2021 and April 2022 from different medical centers 
located at various regions in Baghdad, Iraq. The global clones (GC) and the genes encoding carbapenem resistance, 
including blaOXA−23, blaOXA−24, and blaOXA−58 were identified using multiplex PCR assays. Antibiotic susceptibility 
testing was performed by the Kirby-Bauer disk diffusion susceptibility method. The transposons carrying blaOXA−23 
were examined using PCR mapping. In cases when carbapenem susceptible A. baumannii isolates were found, they 
were subjected to E test, full length sequencing of blaOXA−Ab (blaOXA−51−like) and Institut Pasteur multi-locus sequence 
typing scheme.

Results All but two isolates (92 clinical and 25 environmental) were identified carbapenem-resistant A. baumannii 
(CRAB). Of 117 CRAB isolates, 20 belong to GC1, 19 contained blaOXA−23; of them, 17 isolates harbored the blaOXA−23 
located on Tn2006. Among the 46 CRAB belonging to GC2, 39 contained blaOXA−23; of them, 34 carried the blaOXA−23 
located on Tn2006. The remaining GC1 and GC2 isolates, one GC1 as well as one GC2 isolate, were susceptible to 
imipenem, doripenem, and meropenem and considered carbapenem-susceptible A. baumannii (CSAB). Full-length 
sequencing of the blaOXA−Ab and MLST for the two CSAB isolates belonging to GC1 and GC2 confirmed that the GC1 
isolate belongs to ST 623 and contained an allele that encodes an blaOXA−69 variant of the blaOXA−Ab while the GC2 
belong to ST2 and carried an blaOXA−66 variant.

The context of blaOXA−23 gene 
in Iraqi carbapenem-resistant Acinetobacter 
baumannii isolates belonging to global clone 
1 and global clone 2
Melak Wajid Odhafa1, Israa Al-Kadmy2, Mohammad Reza Pourmand1, Ghazal Naderi1, Mahla Asadian1, 
Sedighe Ghourchian1 and Masoumeh Douraghi1*

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13104-024-06890-w&domain=pdf&date_stamp=2024-10-8


Page 2 of 7Wajid Odhafa et al. BMC Research Notes          (2024) 17:300 

Introduction
Acinetobacter baumannii is the World Health Organiza-
tion’s (WHO) number one critical priority pathogen due 
to its increased resistance to most antibiotics, especially 
carbapenems [1–4]. Carbapenems are used as last resort 
in the treatment of infections caused by multidrug-resis-
tant A. baumannii [5–7]. In the recent period, the rise of 
carbapenem-resistant A. baumannii (CRAB) has been a 
global concern because it reduced the treatment choices 
for infections caused by this pathogen [7–9]. The antibi-
otic resistant strains of A. baumannii are members of the 
two main, globally distributed clones, known as global 
clone 1 (GC1) and global clone 2 (GC2) [10, 11]. Car-
bapenem resistance in A. baumannii is mostly related to 
the acquisition of carbapenem-hydrolyzing oxacillinases 
genes including blaOXA−23, blaOXA−24, and blaOXA−58 [12, 
13]. The blaOXA−23 gene has been found within CRAB in 
various countries, nevertheless the blaOXA−24 and bla-
OXA−58 genes have indeed been recorded as endemic in 
some countries around the world [6, 14]. blaOXA−23 might 
be disseminated from one strain to another through 
transposons including Tn2006, Tn2007, and Tn2008 [6, 
15, 16]. The Tn2006 has two ISAba1 insertion sequences 
with distinct orientations on both sides that surround the 
blaOXA−23 [17]. Because it carries ISAba1, this transpo-
son could be incorporated into both chromosomes and 
plasmids, enabling the blaOXA−23 gene to be disseminated 
[16].

A. baumannii was identified as the most prevalent bac-
terium among US troops with wound infections return-
ing from Iraq where particular clones of A. baumannii 
might be originated from [18]. However, knowledge on 
different aspects of CRAB from Iraq including the clonal 
diversity and the carbapenem resistance genes and their 
genetic context still limited. Here, we examined whether 
transposons play a role in the dissemination of the bla-
OXA−23 in globally distributed clones, GC1 and GC2 A. 
baumannii isolates from Iraq as one of the Middle East 
countries.

Materials and methods
Bacterial isolates
The study was approved by the local ethical committee of 
Tehran University of Medical Sciences (IR.TUMS.MEDI-
CINE.REC.1400.1074). A total of 119 non-repetitive A. 
baumannii isolates including 94 isolates recovered from 
clinical specimens and 25 isolates from the intensive care 

unit (ICU) environment of hospitals; hereafter, called 
environmental isolates. The isolates were collected from 
six hospitals named Shahid Ghazi al Harery Surgical, 
Baghdad teaching hospital, Specialized Burn Hospital, 
Ibn Al balady Maternity & Children’s Hospital, Fatmih 
alzahraa Maternity Hospital, Al-Imamian Al-Kadhimi-
yain Medical City, and a central laboratory in Baghdad, 
Iraq at different time periods of October 2021 to April 
2022. The identification of A. baumannii was performed 
using a combination of biochemical and molecular tests; 
the biochemical identification was done using a vari-
ety of tests, such as the oxidase test reaction, the Triple 
Sugar Iron Agar (TSI), and the oxidation-fermentation 
test (OF) [19], and the molecular identification was done 
using PCR for the blaOXA−Ab gene [20].

Antimicrobial susceptibility testing
The antibiotic susceptibility testing was performed using 
27 antibiotic discs (Oxoid, Basingstoke, United Kingdom) 
including streptomycin (25  µg), spectinomycin (25  µg), 
sulfamethoxazole (300 µg), tetracycline (30 µg), kanamy-
cin (50 µg), neomycin (30 µg), cefotaxime (30 µg), ceftazi-
dime (30  µg), gentamicin (10  µg), ciprofloxacin (5  µg), 
amikacin (30  µg), nalidixic acid (30  µg), tobramycin 
(10  µg), netilmicin (30  µg), imipenem (10  µg), merope-
nem (10  µg), rifampicin (30  µg), ampicillin-sulbactam 
(20 µg), cefepime (30 µg), doripenem (10 µg), piperacil-
lin-tazobactam (110 µg), ceftriaxone (30 µg), minocycline 
(30  µg), doxycycline (30  µg), levofloxacin (5  µg), timen-
tin (ticarcillin-clavulanic acid) (85  µg), trimethoprim-
sulphamethoxazole (25  µg), according to the standard 
Kirby-Bauer disk diffusion susceptibility method [21]. 
The results were interpreted according to the Clinical 
and Laboratory Standards Institute (CLSI) supplement 
M100, 33 rd ed. guideline for Acinetobacter spp [21] or 
Calibrated Dichotomous Sensitivity disk diffusion assay 
(CDS) (http://cdstest.net/). As demonstrated previously, 
the members of GC1 and GC2 are mainly responsible for 
the bulk of globally distributed multi-resistant A. bau-
mannii, including CRAB [22]. However, two of isolates 
examined in the current study belonged to GC1 and 
GC2, while they showed susceptibility to carbapenem. To 
verify the susceptibility to carbapenem in these isolates 
of GC1 and GC2, disc diffusion was performed on two 
distinct single colonies from each isolate, followed by an 
E-test (bioMérieux, Marcy-l’Étoile, France) to determine 

Conclusion This study provides evidence for the dissemination of blaOXA−23 on the Tn2006 in CRAB isolates in 
Baghdad, Iraq. It appears that this transposon is widespread in GC1 and 2 isolates as in the other parts of the world. 
Interestingly, one GC1 and one GC2 isolate from Iraq were found to be susceptible to carbapenem while the isolates 
belonging to GC1 and GC2 have so far rarely been found to be susceptible to carbapenem globally.
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the minimum inhibitory concentration of imipenem, 
doripenem, and meropenem against the isolates.

PCR assays
Two multiplex PCR assays amplifying three alleles of 
ompA, csuE and intrinsic blaOXA−Ab (blaOXA−51−like) were 
performed to determine the GC1 (group 2) and GC2 
(group1) of the isolates [23]. Primers for these alleles 
and annealing temperature are shown in the Table  1 
and reaction conditions as previously described [23]. 
One multiplex PCR assay was performed to identify the 
genes encoding the carbapenem resistance, including 
blaOXA−23, blaOXA−24, and blaOXA−58 [20]. Primers target-
ing these genes and annealing temperature are shown 
in the Table  1 [20]. The PCR for amplifying full length 
blaOXA−Ab was performed to identify the variant of bla-
OXA−Ab family genes [24] using the primers for this gene 
as shown in the Table 1. The manufacturer of reagents is 
Ampliqon for Master mix, and Metabion for all the prim-
ers. The sequencing was done using Applied Biosystems 
ABI sequencer.

PCR mapping for identifying the genetic context of 
blaOXA−23
All the isolates harbored blaOXA−23 were screened for 
Tn2006 and Tn2008 using two overlapping PCRs linking 
the blaOXA−23 gene to the upstream and downstream cop-
ies of ISAba1 [17, 25]. The primers used for PCR map-
ping are shown in Table 1.

Multilocus sequence typing
Multilocus sequence typing (MLST) was performed for 
the two isolates of carbapenem-susceptible A. baumannii 
(CSAB) belonging to GC1 and GC2. Sanger sequencing 
was used and the sequence type was analyzed according 
to the Institute Pasteur (IP) MLST scheme, which uses 
seven housekeeping genes (cpn60, fusA, gltA, pyrG, recA, 
rplB, and rpoB) [26]. The ST number was assigned by 
comparing the allele sequences to the known ones on the 
MLST website (http://pubmlst.org/abaumannii/).

Nucleotide accession numbers
The sequence of intrinsic blaOXA−Ab (blaOXA−51−like) 
gene of A. baumannii isolates; Q26, Q30L, A98/1and 
A87S have been deposited in GenBank and are publicly 
available under the accession numbers OQ916423.1, 
OQ916422.1, OQ916421.1and OQ916420.1.

Statistical analysis
Data analysis was performed using SPSS version 22.0 
(SPSS Inc., USA). Descriptive results were shown as fre-
quencies. For comparison of the categorical variables, 
Chi-square and Fisher’s exact tests of nonparametric data 
were used. P values of less than 0.05 were considered as 
significant.

Table 1 Primers used for PCR assays
PCR Primer Sequence (5ʹ-3ʹ)* Annealing temperature (˚ C) Amplicon length (bp) Reference
Group1 ompAF306

ompAR660
csuEF
csuER
oxa66F89
oxa66R647

F:  G A T G G C G T A A A T C G T G G T A
R:  C A A C T T T A G C G A T T T C T G G
F:  C T T T A G C A A A C A T G A C C T A C C
R:  T A C A C C C G G G T T A A T T C G T
F:  G C G C T T C A A A A T C T G A T G T A
R:  G C G T A T A T T T T G T T T C C A T T C

57 355
702
559

 [23]

Group2 ompAF378
ompAR660
csuEF
csuER
oxa69F169
oxa69R330

F:  G A C C T T T C T T A T C A C A A C G A
R:  C A A C T T T A G C G A T T T C T G G
F:  G G C G A A C A T G A T C T A T T T
R:  C T T C A T G G C T C G T T G G T T
F:  C A T C A A G G T C A A A C T C A A
R:  T A G C C T T T T T T C C C A T C

57 343
580
162

blaOXA−23 oxa23F-like
oxa23R-like

F:  G A T C G G A T T G G A G A A C C A G A
R:  A T T T C T G A C C G C A T T T C C A T

60 501  [20]

blaOXA−24 oxa24F-like
oxa24R-like

F:  G G T T A G T T G G C C C C T T A A A
R:  A G T T G A G C G A A A A G G G G A T T

60 246

blaOXA−58 oxa58F-like
oxa58R-like

F:  A A G T A T T G G G G C T T G T G C T G
R:  C C C C T C T G C G C T C T A C A T A C

60 599

blaOXA−Ab OXA-69 A
OXA-69B

F:  C T A A T A A T T G A T C T A C T C A A G
R:  C C A G T G G A T G G A T G G A T A G A T T A T C

57 975  [24]

ISAba1-oxa23 ISAba1B oxa23-F R:  C A T G T A A A C C A A T C G T C A C C
F:  G A T C G G A T T G G A G A A C C A G A

59 2725  [17]
 [25]

oxa23- ISAba1 oxa23-R
ISAba1B

R:  A T T T C T G A C C G C A T T T C C A T
F:  C A T G T A A A C C A A T G C T C A C C

59 1369  [25]
 [17]

*F and R indicate the forward and reverse primers, respectively

http://pubmlst.org/abaumannii/
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Results
Antibiotic resistance profiles
Of the 119 isolates examined, 117 showed resistance 
to carbapenems including imipenem, doripenem, and 
meropenem; Of them, 92 and 25 were clinical and envi-
ronmental isolates, respectively. They were also resistant 
to different antibiotics including ampicillin, streptomy-
cin, spectinomycin, kanamycin, sulfonamides, ceftazi-
dime and cefotaxime, timentin, (ticarcillin-clavulanate), 
ceftriaxone, ciprofloxacin, nalidixic acid (Figure S1).

Identification of global clones
Multiplex allelic-specific PCR for the identification of 
GCs, revealed that 20 (16.80%) of A. baumannii isolates 
belonged to GC1 including 17 clinical and 3 environmen-
tal isolates. Of the 47 (39.49%) isolates belonging to GC2, 
38 and 9 were clinical and environmental, respectively. 
One clinical isolate belonged to GC3 and the remaining 
isolates, 51 (42.85%) were of other clones.

blaOXA-like genes and the context of blaOXA-23 gene
The blaOXA−23 gene was identified in 76 (80.85%) of the 
clinical isolates, whereas the blaOXA−24 gene was identi-
fied in 11 (11.70%). The blaOXA−23 and blaOXA−24 genes 
were identified in 18 (72%), 6 (24%) of the environmen-
tal isolates, respectively. Furthermore, no isolates carried 
the blaOXA−58 gene. Tn2006 were found in 68 (73.9%) and 
17 (68%) of the clinical and environmental isolates of A. 
baumannii that carried the blaOXA−23 gene, respectively 
(Figure S2). The structure analysis of the gene context is 
provided in Figure S3.

Of 117 CRAB, 19 belong to GC1 contained blaOXA−23; 
of them 17 isolates harbored the blaOXA−23 located on 
Tn2006. Of notable that of 20 GC1 isolates tested in this 
study, one (isolate 98/1) was susceptible to imipenem, 
doripenem, and meropenem. Among 46 CRAB belong-
ing to GC2, 39 contained blaOXA−23; of them 34 carried 
the blaOXA−23 located on Tn2006. It is notable that of 47 
GC2 isolates tested in this study, one (Q26) was suscep-
tible to imipenem, doripenem, and meropenem (Table 2). 
Full-length sequencing of the blaOXA−Ab and MLST for 
the two CSAB isolates belonging to GC1 and GC2 con-
firmed that the GC1 isolate belongs to ST 623 (cpn60-1, 
fusA-1, gltA-1, pyrG-1, recA-5, rplB-1 and rpoB-1) and 
contained an allele that encodes an blaOXA−69 variant of 
the blaOXA−Ab while the GC2 belong to ST2 (cpn60-2, 
fusA-2, gltA-2, pyrG-2, recA-2, rplB-2 and rpoB-2), and 
carried an blaOXA−66 variant.

Discussion
Carbapenem-resistant A. baumannii (CRAB) is listed as 
the number one critical priority pathogen by the World 
Health Organization (WHO) amongst a published list 
of 12 antibiotic-resistant bacteria [1, 27]. The wars in Ta
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the last several decades brought focus on the infections 
caused by A. baumannii among US military returned 
from the Middle East, particularly Iraq and Afghanistan 
[18]. Furthermore, the multiply antibiotic resistant A. 
baumannii and its particular lineage are hypothesized 
to have originated from Middle East region. However, 
there are limited data from this geographical region. On 
the other hand, there is only one study have reported 
the presence of blaOXA−23 in A. baumannii from Erbil 
city located in Kurdistan Region, Iraq [28]. Here, for 
the first time we analyzed the clonal diversity of CRAB 
Iraqi isolates that recovered in September 2021 to April 
2022 from six hospitals in Baghdad, Iraq and determined 
the role of transposons in the dissemination of the most 
widespread carbapenem resistance gene, blaOXA−23.

This study showed that all but two of the isolates exam-
ined were CRAB (98.31%); this observation is consistent 
with the findings from neighbouring countries of Iraq 
where the rate of CRAB ranged from more than 30–90% 
[29–34]. The rate of CRAB rates was slightly lower in 
neighboring countries than Iraq; they varied from 84.6 
to 88.5% in Iran, 83–84% in Turkey, and 85.18–87.04% in 
Kuwait [29–31]. Also, resistance to carbapenem ranged 
from 68.9 to 75.1% in Jordan and was reported 64.6% in 
Syria, and 32.6% in Saudi Arabia [32–34].

This study further indicates the first analysis of global 
clones using allele-specific PCR in Iraqi A. baumannii 
isolates and revealed that most of the isolates belong to 
GC2 as seen in different parts of the world [35–37]. All 
but one of GC2 isolates examined in this study were resis-
tant to main classes of antibiotics including carbapen-
ems, aminoglycosides, cephalosporins, fluoroquinolones. 
Interestingly, one of the GC2 isolates was susceptible 
to carbapenems including imipenem, meropenem, and 
doripenem. The full-length sequencing of the blaOXA−Ab 
of this GC2 isolate revealed that it contains an blaOXA−66 
variant of the intrinsic blaOXA−Ab gene consistent with 
their assignment to GC2. This isolate was found to 
belong to ST2, which is consistent of assignment of this 
isolate to GC2 as represented in majority of strains that 
belong to GC2 [26]. The isolates belong to ST2 reported 
from Lebanon [38], and Japan [39], in all of these studies 
the ST2 isolates were resistant to carbapenems.

While the most of GC1 isolates tested in this study 
were resistant to different classes of antibiotics including 
carbapenems, aminoglycosides, cephalosporins, fluoro-
quinolones, there was one GC1 isolate was susceptible 
to carbapenems including imipenem, doripenem, and 
meropenem. The full-length sequencing of the blaOXA−Ab 
gene of this GC1 isolate identified CSAB showed an bla-
OXA−69 variant of the blaOXA−Ab gene consistent with their 
assignment to GC1. Using MLST, it was found that the 
GC1 isolate belong to ST623 that is a Single Locus Vari-
ant (SLV) of ST1 (cpn60-1, fusA-1, gltA-1, pyrG-1, recA-5, 

rplB-1 and rpoB-1) and is consistent of assignment of 
this isolate to GC1. ST623 is a sequence type which have 
been reported in three isolates from Erbil city Kurdistan 
Region, Iraq [28], suggesting that ST623 might be found 
in the country. Prior to the study from Kurdistan, ST623 
was found in 17 isolates from Nepal and grouped with 
ST1 in clonal complex 1 (CC1) [40]. Of notable is that 
the isolates belonging to GC1 and GC2 have so far rarely 
been found to be susceptible to carbapenem globally. 
Hence, the CSAB isolates of GC1 and GC2 found in this 
study, might have undergone unique evolutionary pro-
cess and need to be investigated by metagenomics study 
in the future.

The percentages of the blaOXA−23 and blaOXA−24 genes 
were not statistically different in the clinical and environ-
mental isolates. This study demonstrated that the bla-
OXA−23 gene, which is present on the ISAba1-bounded 
transposon Tn2006, was present in the majority of GC1 
and GC2 CRAB isolates. blaOXA−23 was discovered in 
Tn2006 [17, 41] rather than Tn2007, Tn2008, and Tn2009 
by earlier studies. Since Tn2006 may migrate about on its 
own, as was previously shown, it can be found in various 
genomic places and structures in different A. baumannii 
strains [16].

Conclusions
This study provides evidence for the dissemination of 
blaOXA−23 on the Tn2006 in CRAB isolates in Baghdad, 
Iraq. It appears that this transposon is widespread in GC1 
and 2 isolates as in the other parts of the world. Inter-
estingly, one GC1 and one GC2 isolate from Iraq were 
found to be susceptible to carbapenem while the isolates 
belonging to GC1 and GC2 have so far rarely been found 
to be susceptible to carbapenem globally.
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