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Abstract 

Objectives  The crystal structure of the six protomers of gap junction protein beta 2 (GJB2) enables prediction 
of the effect(s) of an amino acid substitution, thereby facilitating investigation of molecular pathogenesis of missense 
variants of GJB2. This study mainly focused on R143W variant that causes hearing loss, and investigated the relation-
ship between amino acid substitution and 3-D structural changes in GJB2.

Methods  Patients with nonsyndromic hearing loss who appeared to have two GJB2 pathogenic variants, includ-
ing the R143W variant, were investigated. Because the X-ray crystal structure of the six protomers of the GJB2 protein 
is known, R143W and structurally related variants of GJB2 were modeled using this crystal structure as a template. The 
wild-type crystal structure and the variant computer-aided model were observed and the differences in molecular 
interactions within the two were analyzed.

Results  The predicted structure demonstrated that the hydrogen bond between R143 and N206 was important 
for the stability of the protomer structure. From this prediction, R143W related N206S and N206T variants showed loss 
of the hydrogen bond.

Conclusion  Investigation of the genotypes and clinical data in patients carrying the R143W variant on an allele 
indicated that severity of hearing loss depends largely on the levels of dysfunction of the pathogenic variant 
on the allele, whereas a patient with the homozygous R143W variant demonstrated profound hearing loss. We 
concluded that these hearing impairments may be due to destabilization of the protomer structure of GJB2 caused 
by the R143W variant.
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Introduction
GJB2 is the most frequent causative gene of autoso-
mal recessive nonsyndromic sensorineural hearing 
loss (DFNB1A, OMIM: 220290) worldwide [1, 2]. GJB2 
encodes connexin 26, which forms a hemichannel or con-
nexon composed of six protomers (subunits), enabling 
the exchange of ions and small molecules between cells. 
A gap junction that allows the transport of small mole-
cules, including K + , in the cochlear cells and is believed 
to be essential to maintaining high K + concentration in 
the cochlear endolymph via ion-recycling in the cochlea 
[3]. Normal ion exchange occurs when the gap junction 
formed by two connexons achieve the correct three-
dimensional (3-D) structure.

Hearing levels of the patients having biallelic missense 
variants of GJB2 vary from mild to profound [4–6]. This 
could be attributed to the extent of the level of dysfunc-
tion of the GJB2 missense variants, based on the fact 
that a compound heterozygote with two nonsense or 
truncated variants generally leads to more severe pheno-
types [4, 5]. Various studies have attempted to elucidate 
the extent of molecular pathology of GJB2 variants via 
in vitro analyses [7–9]. However, due to technical differ-
ences, the molecular pathology of some variants remains 
controversial [7–9], even though the pathogenicity of var-
iant which change an arginine at position 143 of the GJB2 
to a tryptophan (R143W) (NM_004004.6:c.427C > T) has 
been established clinically [10, 11].

In Ghana, R143W is the largest contributor to non-
syndromic hearing impairment and has a reported preva-
lence of 25.9% in affected multiplex families [12].

To understand the molecular pathology of each mis-
sense variant of GJB2, predicting the structural changes 
in GJB2 caused by each variant is considered an alter-
native strategy, as it provides visual information of the 
structural change at the atomic level. In addition, it could 
provide insights for designing specific drugs to attenuate 
or block the dysfunctional functioning by changing the 
residues.

The crystal structure of the gap junction channel 
revealed two membrane-spanning hemichannels consist-
ing of six GJB2 protomers [13]. Notably, R143 has been 
shown to interact with N206 through a hydrogen bond 
[13]. The two residues reside in adjacent transmembrane 
regions (helix-3 and helix-4) and are considered to con-
tribute to the stability of the protomer. Interestingly, not 
only the R143W but also the N206S (c.617A > G) [14] and 
N206T (c.617A > C) [15] variants have been reported to 
be associated with hearing loss.

This study was aimed at predicting the structural 
changes in GJB2 caused by the R143W as well as the 
N206S and N206T variants and investigating whether the 
hydrogen bond between the two residues was affected. 

We also assessed whether the 3-D structure of GJB2 was 
altered by the V37I variant. Patients carrying the R143W 
variant in one allele and a pathogenic variant of GJB2 in 
the other were included, and the correlation between the 
genotypes and hearing levels of patients was investigated.

Methods
Molecular modeling of GJB2 variants
The R143W, N206T, N206S, and V37I variants of GJB2 
were modeled on SWISS-MODEL [16, 17] using the 
crystal structure of GJB2 (PDB: 2zw3, A chain) [13] as a 
template. SWISS-MODEL is a fully automated protein 
homology-modeling server and one of the most widely 
used tools with high reliability [18]. In our previous study, 
the structures of its models showed high scores using the 
structural evaluation software Verify 3D [19–21]. Fur-
thermore, to confirm the accuracy of the models, the 3-D 
structures corresponding to each model were predicted 
using Alphafold2 [22, 23], which is a novel and powerful 
machine learning approach with the highest reliability 
among the options currently available. The calculations 
were carried out in ColabFold v1.5.5: AlphaFold2 using 
MMseqs2 [24]. All diagrams were created using UCSF 
Chimera [25] to visualize ribbon models with the hydro-
gen bonds.

Subjects
Genetic testing for GJB2 variants by direct sequencing 
was performed on 74 individuals (46 families) with hear-
ing loss, and 42 patients (37 families) were found to carry 
biallelic GJB2 variants.  In total, 22 patients with non-
syndromic hearing loss who appeared to have two GJB2 
pathogenic variants including at least one R143W variant 
were investigated. Hearing levels were examined using 
pure-tone audiometry, auditory steady-state response, or 
conditioned orientation reflex audiometry, according to 
the age of the patients. Hearing levels of those with bet-
ter hearing were classified according to the recommenda-
tions of the Genetic Deafness study group [26]. Based on 
our flowchart, genetic analyses of GJB2 were performed 
on patients with nonsyndromic hearing loss in which 
nongenetic causes were excluded [27]. To predict the 
pathogenicity of each variant, the REVEL scoring system, 
an in silico pathogenicity predictor of missense variants 
[28], was used. Scores ≥ 0.7 were considered to be indica-
tive of pathogenicity [29].

Results
The crystal structure of GJB2 was used as a template; 
then, a structural model for the R143W variant was con-
structed, and the resulting mechanisms of dysfunction 
from the viewpoint of structural biology were investi-
gated. R143 was located in helix 3 of GJB2, and by virtue 
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of its hydrogen bonding to N206 in helix 4, stability of the 
subunit structure (one unit of six protomers) was thought 
to be maintained (Fig. 1a, b). The hydrogen bond disap-
peared after substituting R143 with tryptophan (W), 
as shown in our structural model (Fig.  1c). Moreover, 
N206T and N206S have both been reported as patho-
genic variants of GJB2 [14, 15, 30], which are variants of 
the corresponding partner residue, i.e., N206 for hydro-
gen bonding with R143. The REVEL scores [28] predicted 
the R143W as well as the N206T and N206S variants to 
be pathogenic (R143W; 0.918, N206T; 0.826, N206S; 
0.775), supporting the findings of previous reports. Pre-
diction of the 3-D structural models of the N206T and 
N206S variants revealed absence of the hydrogen bond 
between the side chains of the R143 and the -OH group 
of either the substituted T206 or S206 (Fig. 1d, e).

Structural change in another pathogenic GJB2 variant, 
V37I [31], was also predicted and compared with those 
in the R143W, N206T, or N206S variants. When patients 
carried the V37I variant on an allele with the R143W or 
N206S variant on the other allele, they showed moderate 
to severe hearing loss (Additional Table S1). In the struc-
ture of GJB2, the valine at position 37 is located at the 
center of the pore (Additional Fig. S1). By comparing the 
3-D structures of the wild and variant models, it was sug-
gested that when the valine at position 37 was substituted 
with isoleucine, although isoleucine has a slightly larger 
side chain, no significant change was observed in the 
hydrophobicity of the surroundings for both wild-type 
and variant residues (Additional Fig. S1).

Furthermore, the hearing levels of the 34 patients car-
rying at least the R143W variant on an allele with known 
pathogenic variants on the other allele were investi-
gated (Fig.  2). The clinical data of patients with each 
genotype are presented in Additional Table  S1. Geno-
type–phenotype correlations revealed that when the 
other allele of R143W was a missense variant among 
the 11 patients harboring p.[R143W];[V37I] genotype, 
one patient had mild hearing loss, nine patients had 
moderate hearing loss, whereas one had severe hear-
ing loss. The patient with p.[R143W];[H73Y] geno-
type had severe hearing loss. Among the five cases 
having profound hearing loss, only one case had 
p.[R143W];[R143W] genotype. Conversely, when the 
other allele included a truncated variant (frameshift or 
nonsense variant), profound hearing loss was observed, 
i.e., among 21 cases having either p.L79Cfs*3(c.235delC 
rs80338943), p.G45E;Y136*(rs786204690), p.H100Rfs*14 
(c.299_300del, rs111033204), or p.A171Efs*40 
(c.508_511dup, rs773528125) on the allele other than 
the R143W allele, 17 had profound hearing loss (Fig. 2). 
Similar to those with the R143W allele, patients with 
p.[N206S];[V37I] genotype showed moderate hearing 

loss, whereas those with p.[N206S];[truncated variants] 
genotypes tended to show severer hearing loss (Addi-
tional Table S1).

Discussion
This study focused on the hydrogen bond between R143 
and N206 of the adjacent helices in the GJB2 subunit 
(one unit of six protomers) and examined its significance. 
Based on the crystal structure [13] and variant models, 
including the pathogenic variants of R143W, N206T [15], 
and N206S [14, 32], the hydrogen bond was absent in 
all cases. This finding strongly suggests that this hydro-
gen bond is an indispensable component in maintain-
ing the transmembrane domain structure of the GJB2 
protomer and is essential for its proper function [33]. We 
also built other molecular models for three variants—
namely, R143W, N206T, and N206S—using Alphafold2. 
As a result, it became clear that the hydrogen bonding 
between R143 and N206 in the wild type disappeared in 
all three variants, indicating the accuracy of the models 
made by SWISS-MODEL (Additional Fig.  S2). As the 
position of R143 is located at a distance from the inner 
pore region where ion permeation occurs (even the near-
est Ile 9 residue is at least 16.50 Å away), the R143W 
variant would have little direct effect from electrostatic 
interactions with potassium ions moving through the 
pore. Hence, the R143W variant, rather than directly 
affecting ion permeability, was predicted to destabilize 
the 3-D structure of each protomer (one unit of six), sub-
sequently resulting in instability of the whole hemichan-
nel (connexon) structure. This instability would also 
result in structural changes in the whole gap junction 
structure, consequently decreasing ion permeability indi-
rectly. If the instability of the protomer with the R143W 
variant leads to loss of function, the level of hearing loss 
could be primarily determined by the level of residual 
function of the GJB2 protomer from the other allele. In 
this study, profound hearing loss was detected in patients 
with the p.[R143W];[R143W] genotype. Moreover, pre-
vious studies have also documented severe to profound 
hearing loss in all patients with the p.[R143W];[R143W] 
genotype [10, 11, 34]. Extremely reduced hearing lev-
els in patients with compound heterozygotes of R143W 
with either a frameshift or a nonsense variant have also 
been observed. In case of patients with frameshift vari-
ants, patients with the p.[R143W];[G12Vfs*2 (c.35delG, 
rs80338939)] genotype showed profound hearing loss 
[5]. This finding on profound hearing loss is consistent 
with the prediction that the presence of the R143W vari-
ant results in severe hearing loss through the complete 
elimination of the gap junction function. Young patients 
with the p.[R143W];[L79Cfs*3] compound heterozy-
gous variant often have profound hearing loss (75%), but 
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Fig. 1.  3-D structures of the wild-type and variants of GJB2. a The hemichannel crystal structure consisting of six wild-type GJB2 proteins. The 
positions R143 and N206 in one of the GJB2 hexamers are indicated by yellow circles. b Hydrogen bond between R143 on helix 3 and N206 on helix 
4 of wild-type proteins is indicated in red. c–e The hydrogen bond was absent in R143W (c), N206T (d), and N206S (e) variants. Arrows indicate 
the position of the hydrogen bonds
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relatively severe (12.5%) or moderate hearing loss (12.5%) 
is also observed (Additional Table  S1). Childhood hear-
ing impairment with GJB2 variations involves all fre-
quencies and is of variable severity [35]. The variation in 
hearing loss severity could not be satisfactorily explained 
only from the view point of structural biology. More 
age-specific hearing data from patients with the same 
variant will be needed to clarify the age-specific effects of 
p.[R143W];[L79Cfs*3] on hearing levels.

Unlike the R143W variant that showed struc-
tural instability, only minor structural and physi-
cal–chemical changes were observed in the V37I 
variant when compared with the wild type. Contrary to 
the findings in patients with the R143W homozygote 
or p.[R143W];[truncating variant] genotypes, our find-
ing that none of the patients with the p.[R143W];[V37I] 
genotype showed profound hearing loss is consistent 
with the results of previous reports [31, 34–38]. These 
results imply that the V37I variant does not significantly 
affect the stability of the connexon structure. Further, no 
significant changes in the interactions (including hydro-
phobic interactions) with the surrounding residues were 
observed when valine 37 was substituted with isoleucine. 
Recently, a Chinese group showed that V37I does not 

affect connexon formation, but causes the aggregation 
of detached inner wall N-terminal “plugs” and reduces 
channel ion flow, as revealed by molecular dynamics 
(MD) simulations [39]. This report suggests that the V37I 
variant does not affect connexon formation, but is associ-
ated with hearing loss.

Therefore, it was predicted that the variant does not 
lead to a distinct decrease in structural function, result-
ing in relatively mild hearing loss in patients with the 
p.[R143W];[V37I] genotype. From the above findings, 
not only the distance from the ion pore but also the char-
acteristics of the variants, including physical–chemical 
changes, should be considered when investigating the 
effect of these variants.

In in  vitro studies, the R143W variant was localized 
in the region of cell–cell contact and may have formed 
functional gap junction channels with a value of conduct-
ance similar to that of wild-type GJB2 [7]. In addition, the 
coexpression of the wild-type GJB2 and N206S variant 
resulted in the formation of more stable channels com-
pared with the expression of the N206S variant alone[40]. 
In vitro coexpression studies of the wild-type GJB2 and 
subjected variants (L90P, R127H, and R143W) that were 
injected into Xenopus oocytes exhibited significantly 

Fig. 2  Hearing levels of patients carrying p.R143W variant of GJB2. Hearing levels of 22 patients with each genotype, including at least one R143W 
variant, were shown. See [18] for the classification of the hearing levels
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low levels of conductivity compared to that of the wild 
type[9]. These variants are located on the transmembrane 
domain of the protomer, far from the inner pore region, 
similar to R143W or N206S. They also lead to the forma-
tion of hemichannel structures in the aforementioned 
in vitro expression systems. These reports and our model 
suggest that the structural defect caused by the R143W 
variant allows gap junctions to form, but causes distor-
tion of connexon structure and reduces ion permeability.

In future research, we will quantitatively investigate the 
energy differences between the wild type and variants by 
performing more detailed molecular dynamics calcula-
tions, such as by the free energy perturbation method. 
This analysis would enable quantification of the destabi-
lization of the protomer structure caused by R143W, and 
is expected to clarify the correlation between structural 
distortion and hearing level.

Limitations
The findings obtained in this study indicate that the 
R143W variant associated with the loss of a hydrogen 
bond may form an expressible hemichannel structure as 
a protein, which is unstable and functionally abnormal. 
However, more cases of patients with the R143W variant 
will be needed to prove our molecular pathology model, 
which can explain patients’ hearing level.

Conclusion
We concluded that the R143W variant, which causes 
structural destabilization in the structural model of GJB2, 
provides interpretation of the severity of the molecular 
pathology and can serve as an alternative to clinical data. 
Accumulation of structural models, in  vitro experimen-
tal data, and careful evaluation of clinical data focused on 
genotype–phenotype correlation would provide a precise 
understanding of the molecular pathology of GJB2 vari-
ants. However, in order to make these molecular patholo-
gies more authoritative, cases of patients with the same 
variant are needed.
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