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Abstract 

Objectives: The mangrove cricket, Apteronemobius asahinai, shows endogenous activity rhythms that synchronize 
with the tidal cycle (i.e., a free-running rhythm with a period of ~ 12.4 h [the circatidal rhythm]). Little is known about 
the molecular mechanisms underlying the circatidal rhythm. We present the draft genome of the mangrove cricket to 
facilitate future molecular studies of the molecular mechanisms behind this rhythm.

Data description: The draft genome contains 151,060 scaffolds with a total length of 1.68 Gb (N50: 27 kb) and 92% 
BUSCO completeness. We obtained 28,831 predicted genes, of which 19,896 (69%) were successfully annotated using 
at least one of two databases (UniProtKB/SwissProt database and Pfam database).
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Objective
Some animals in the intertidal zone, which is influenced 
by a tidal flooding and ebbing cycle of approximately 
12.4  h, show a tidal rhythm in their activity [1–3]. This 
endogenous rhythm, which persists even under constant 
conditions, is known as a circatidal rhythm, and it occurs 
over a range of ~ 11.5  h (predatory mite) [4] to ~ 13.8  h 
(high-shore limpet) [5]. Although the molecular mecha-
nisms underlying the circadian rhythm (i.e., an endoge-
nous rhythm with a period of ~ 24 h) are well known [6], 
mechanistic studies of circatidal rhythms are limited [7, 
8].

The mangrove cricket (Apteronemobius asahinai), an 
endemic species of mangrove forest floors, is also influ-
enced by tides. This cricket shows a circatidal rhythm in 
its locomotor activity, with a period of ~ 12.6  h [9, 10]. 
This endogenous rhythm is not entrained by the light–
dark cycle but by periodic inundations [11, 12]. The 
mangrove cricket is one of only a few model organisms 

studied for the purpose of understanding the molecu-
lar mechanisms of the circatidal rhythm. Previous work 
demonstrated that the circatidal rhythm was not dis-
rupted by suppressing the expression of two circadian 
clock genes, period and Clock [13, 14]. These findings 
indicate that the molecular components of the circatidal 
clock differ from those of the circadian clock in the 
mangrove cricket. Recently, transcriptome analyses of 
this species were conducted to reveal circatidal clock-
controlled genes [15] or to identify biological processes 
related to the circatidal rhythm [16]. Here, we provide the 
draft genome of the mangrove cricket. This information 
is expected to contribute to future molecular studies by 
enabling the use of molecular techniques such as GWAS.

Data description
Mangrove crickets were collected from a mangrove for-
est in Ginoza, Okinawa Prefecture, Japan. To gener-
ate highly homozygous individuals, we repeated sibling 
mating over 7 generations and used two adult males of 
the eighth generation for DNA extraction (for details, 
see Data file 1). Genomic DNA from the whole body of 
a male was extracted using the DNeasy® Blood & Tis-
sue Kit (Qiagen). The NEBNext Ultra II DNA Library 
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Prep Kit for Illumina (New England BioLabs) was used 
to construct a library from 500 ng sample DNA. Paired-
end (2 × 150  bp) sequencing was performed on the 
Illumina HiSeq X platform. For long-read library prepa-
ration, genomic DNA from the whole body of another 
male was extracted using the DNeasy® Blood & Tissue 
Kit and Genomic-tip 20G Kit (both from Qiagen). Short 
DNA fragments were removed using Short Read Elimina-
tor Kit (Circulomics). The library was constructed from 
415  ng sample DNA using the Rapid Sequencing Kit 
(SQK-RAD004; Oxford Nanopore Technologies [ONT]). 
Sequencing was performed twice on the MinION Mk1b 
with a flow cell R9.4 (FLO-MIN106D; ONT). The Illu-
mina and ONT platforms yielded 217.5 and 14.6  Gb of 
nucleotide sequence, respectively. The Illumina reads 
(Data file 2) were assembled and scaffolded using the 
CLC genomic workbench v20.0.4 [17]. The ONT reads 
(Data file 3) were trimmed for adapter and low-quality 
reads using Porechop v0.2.4 [18] and Nanofilt v2.8.0 [19], 
respectively, and then error-corrected using the Illumina 
reads by LoRDEC v0.9 [20]. Finally, the error-corrected 
ONT reads were subjected to gap closing in the scaffolds 
using TGS-Gapcloser v1.1.1 [21]. The final draft genome 
(Data file 4) consists of 151,060 scaffolds with a total 
length of 1,676,217,857 bp, average length of 11,096 bp, 
and N50 of 27,317 bp. BUSCO analysis using the online 
interface gVolante [22] identified 983 genes (92.21%) 
among the 1,066 arthropodal universal orthologs com-
pletely, and only 17 genes (1.59%) were missing, indicat-
ing high completeness of our draft genome.

RepeatModeler v2.0.1 [23] estimated 2532 repeat 
sequences, which were utilized by RepeatMasker v4.0.9 
[24] to mask the repetitive elements in the genome. 
The repeat sequences in the assembly comprised 
572,734,587 bp (34.17% of the total length). The MAKER 
v2.31.11 [25] pipeline predicted 28,831 protein-coding 
genes in the hard-masked genome (Data files 5–7). The 
average coding sequence length was 997.08  bp, with an 
average intron length of 1000.45 bp and average number 

of exons per gene of 4.34. We annotated 16,528 genes 
(57.3%) via a BLASTP v2.10.1 + [26] search (E-value 
threshold of 1 ×  10–10) against known proteins in the 
UniProtKB/SwissProt Database [27]. InterProScan 
v5.50–84.0 [28] identified 4537 domain families among 
17,932 (62.3%) genes via a search of the Pfam database. 
As a result, 69% of the predicted genes were successfully 
annotated by at least one of the two methods.

Limitations
The genome size, assessed by the k-mer frequency distri-
bution of the Illumina reads using KmerGenie v1.7051 
[29], was estimated to be 1,610,998,267 bp. Based on this 
estimation, the sequencing depths obtained from the Illu-
mina and ONT platforms were calculated to be 134× and 
9× , respectively. Since the coverage of ONT reads was low, 
the usage of them were limited only to the gap closing. The 
genome size of the mangrove cricket is comparable with 
the three previously sequenced Gryllidae genomes: Tel-
eogryllus occipitalis (1.93  Gb) [30], Teleogryllus oceanicus 
(2.05 Gb) [31], and Laupala kohalensis (1.6 Gb) [32].

Abbreviations
BUSCO: Benchmarking Universal Single-Copy Orthologs; Gb: Giga base pair; 
GWAS: Genome-wide association studies; kb: Kilo base pair; ONT: Oxford 
Nanopore Technologies.
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Table 1 Overview of data files/data sets

Label Name of data file/data set File types 
(file 
extension)

Data repository and identifier (DOI or accession number)

Data file 1 Materials and Methods PDF figshare: https:// doi. org/ 10. 6084/ m9. figsh are. 16632 781 [33]

Data file 2 Illumina raw sequences FASTQ DDBJ Sequence Read Archive: https:// ident ifiers. org/ insdc. sra: DRX29 0103 [34]

Data file 3 ONT raw sequences FASTQ DDBJ Sequence Read Archive: https:// ident ifiers. org/ insdc. sra: DRX29 0104 [35]

Data file 4 Whole genome sequence data FASTA DDBJ: https:// ident ifiers. org/ ncbi/ insdc: BPSV0 10000 00 [36]

Data file 5 Structural and functional gene annotation GFF figshare: https:// doi. org/ 10. 6084/ m9. figsh are. 14746 056 [37]

Data file 6 predicted protein sequences FASTA figshare: https:// doi. org/ 10. 6084/ m9. figsh are. 14746 056 [38]

Data file 7 predicted transcript sequences FASTA figshare: https:// doi. org/ 10. 6084/ m9. figsh are. 14746 056 [39]

https://doi.org/10.6084/m9.figshare.16632781
https://identifiers.org/insdc.sra:DRX290103
https://identifiers.org/insdc.sra:DRX290104
https://identifiers.org/ncbi/insdc:BPSV01000000
https://doi.org/10.6084/m9.figshare.14746056
https://doi.org/10.6084/m9.figshare.14746056
https://doi.org/10.6084/m9.figshare.14746056


Page 3 of 3Satoh et al. BMC Res Notes          (2021) 14:387  

Availability of data and materials
The data described in this Data note can be freely and openly accessed on 
DDBJ under BioProject ID: PRJDB11838 and the figshare database. Sequence 
reads have been deposited at DDBJ Sequence Read Archive under acces-
sion number DRX290103 (https:// ident ifiers. org/ insdc. sra: DRX29 0103) [34] 
and DRX290104 (https:// ident ifiers. org/ insdc. sra: DRX29 0104) [35]. The whole 
genome sequence data has been deposited at DDBJ under accession number 
BPSV01000000 (https:// ident ifiers. org/ ncbi/ insdc: BPSV0 10000 00) [36]. The 
other data files generated in the current study are available at the figshare 
database: Data file 1 (https:// doi. org/ 10. 6084/ m9. figsh are. 16632 781) [33], Data 
file 5–7 (https:// doi. org/ 10. 6084/ m9. figsh are. 14746 056) [37–39]. See Table 1 
and references [33–39] for details.
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