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analysis for Dall’s sheep
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Abstract 

Objectives: Dall’s sheep (Ovis dalli dalli) are important herbivores in the mountainous ecosystems of northwestern 
North America, and recent declines in some populations have sparked concern. Our aim was to improve capabilities 
for fecal metabarcoding diet analysis of Dall’s sheep and other herbivores by contributing new sequence data for 
arctic and alpine plants. This expanded reference library will provide critical reference sequence data that will facilitate 
metabarcoding diet analysis of Dall’s sheep and thus improve understanding of plant-animal interactions in a region 
undergoing rapid climate change.

Data description: We provide sequences for the chloroplast rbcL gene of 16 arctic-alpine vascular plant species that 
are known to comprise the diet of Dall’s sheep. These sequences contribute to a growing reference library that can be 
used in diet studies of arctic herbivores.
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Objective
Dall’s sheep (Ovis dalli dalli) are endemic to alpine eco-
systems of northwestern North America, and their pop-
ulations have been declining in recent decades [1–4]. 
Climate change may be altering alpine plant communi-
ties and contributing to these declines. Dall’s sheep have 
a generalist plant diet; they were observed eating 110 
different plant species in the Yukon Territory, Canada 
through traditional observational methods [5]. However, 
the diet of Dall’s sheep remains relatively poorly char-
acterized and represents a gap in understanding how 
climate change is affecting plant-animal interactions in 
alpine ecosystems.

The level of taxonomic resolution of items consumed 
in a diet study greatly affects ecological analysis [6]. 
DNA based tools can infer diet composition with higher 
resolution and reduces cost, time, and effort compared 
to observational, morphological, and microhistological 
methods [7, 8]. Specifically, DNA metabarcoding uses 
universal primers for multispecies identification to mass-
amplify DNA barcodes using PCR that are then read 
using next generation sequencing and assigned to the 
appropriate taxon [9]. DNA barcoding includes a refer-
ence database of potential diet components, providing 
the capability to identify diet items to a desirable taxo-
nomic resolution, ensuring that all components will be 
detected and assigned [10]. Next generation sequencing 
of DNA from fecal samples has been successfully used to 
characterize diets of a variety of species, including ungu-
lates [11, 12]. However, metabarcoding has not yet been 
used to assess the diet of Dall’s sheep. Lack of sequence 
data for some arctic/alpine plants known to be grazed 
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upon by Dall’s sheep currently limits the development 
and application of metabarcoding for alpine herbivore 
diet studies.

To improve capabilities for diet analysis of Dall’s sheep 
and other arctic herbivores, we used a python script [13] 
to identify gaps in archived nucleotide sequence data for 
species known to comprise the diet of Dall’s Sheep, then 
obtained specimens of 16 species of arctic/alpine vascu-
lar plants for which sequence information was missing 
or underrepresented in publicly archived databases. We 
then sequenced the rbcL gene of the plant chloroplast 
genome, which is one of the most commonly used bar-
coding regions for plants [9, 14].

Data description
Plant specimens were obtained from herbarium speci-
mens collected from the various arctic or alpine sites 
across mainland Alaska (Additional file  1). Plant tissue 
was extracted at the U. S. Geological Survey Alaska Sci-
ence Center, employing a CTAB-PVP protocol modified 
from Stewart and Via [15] as reported by Muñiz-Sala-
zar et  al. [16]. Extracts were quantified and shipped 
to the School of Environmental and Forest Sciences 
Genetics Lab at the University of Washington for PCR 
amplification and NexteraXT library preparation for 
sequencing. The rbcL gene region of each specimen was 
amplified via a two-step PCR protocol [17] with a pri-
mary amplification with tailed primers (rbcLaf + adap-
tor, rbcLr506 + adaptor) followed by a second round of 
amplification to anneal NexteraXT indices. Amplicons 
were quantified using a Qubit 4 Fluorometer (Ther-
moFisher) and diluted with dH2O to the recommended 

starting concentration for library preparation, 0.2  ng/
μL (Illumina). Tagmentation, library amplification, and 
clean-up steps were completed according to the Nexter-
aXT library preparation protocol (Illumina) with a vari-
ation of using New England Biolabs AMPure XP beads 
for cleanup instead of Agentcourt AMPure beads. The 
libraries were normalized and pooled prior to sequencing 
on an Illumina Miseq platform. Samples were paired-end 
sequenced in a 2 × 300 bp format .

Illumina sequence reads were processed in Geneious 
Prime 2020.2.4. Forward and reverse read files (fastq) 
were paired upon import, then quality trimmed with 
BBDuk trimmer (minimum quality 20, minimum over-
lap 20, minimum length 20). Sequences were normalized, 
then aligned and assembled using the de novo assembly 
tool (Geneious Prime). Assembled contigs were uploaded 
and annotated using BankIt, then submitted to GenBank 
[18]  (Table 1).

Limitations
The following are limitations for these data files:

1. We sequenced one DNA extraction from each plant 
species.

2. The sequencing project was funded through a grant 
to train new users on Illumina Nextera sequencing.

Abbreviations
rbcL: Large subunit of ribulose 1, 5 bisphosphate carboxylase/oxyge-
nase (RUBISCO or RuBPCase); CTAB-PVP: DNA extraction method using 

Table 1 Overview of data files for arctic plant rbcL sequencing

Label Name of data file/data set File types Data repository and identifier

Data file 1 Elymus borealis rbcl contig *.gb https:// ident ifiers. org/ ncbi/ insdc: MW538 513 [19]

Data file 2 Gentiana propinqua rbcl contig *.gb https:// ident ifiers. org/ ncbi/ insdc: MW538 515 [20]

Data file 3 Juncus mertensianus rbcl contig *.gb https:// ident ifiers. org/ ncbi/ insdc: MW548 523 [21]

Data file 4 Luzula arctica rbcl contig *.gb https:// ident ifiers. org/ ncbi/ insdc: MW548 524 [22]

Data file 5 Ranunculus kamchaticus rbcl contig *.gb https:// ident ifiers. org/ ncbi/ insdc: MW548 525 [23]

Data file 6 Oxytropsis scammaniana rbcl contig *.gb https:// ident ifiers. org/ ncbi/ insdc: MW548 526 [24]

Data file 7 Packera ogotorukensis rbcl contig *.gb https:// ident ifiers. org/ ncbi/ insdc: MW548 527 [25]

Data file 8 Penstemon gormanii rbcl contig *.gb https:// ident ifiers. org/ ncbi/ insdc: MW548 528 [26]

Data file 9 Saxifraga caespitosa rbcl contig *.gb https:// ident ifiers. org/ ncbi/ insdc: MW548 529 [27]

Data file 10 Silene tayloriae rbcl contig *.gb https:// ident ifiers. org/ ncbi/ insdc: MW548 530 [28]

Data file 11 Smelowskia integrifolia rbcl contig *.gb https:// ident ifiers. org/ ncbi/ insdc: MW548 531 [29]

Data file 12 Stellaria alaskana rbcl contig *.gb https:// ident ifiers. org/ ncbi/ insdc: MW548 532 [30]

Data file 13 Taraxacum lyratum rbcl contig *.gb https:// ident ifiers. org/ ncbi/ insdc: MW548 533 [31]

Data file 14 Anemone lithophilia rbcl contig *.gb https:// ident ifiers. org/ ncbi/ insdc: MW526 257 [32]

Data file 15 Carex pyrenaica rbcl contig *.gb https:// ident ifiers. org/ ncbi/ insdc: MW538 514 [33]

Data file 16 Elymus latiglumis rbcl contig *.gb https:// ident ifiers. org/ ncbi/ insdc: MW537 582 [34]

https://identifiers.org/ncbi/insdc:MW538513
https://identifiers.org/ncbi/insdc:MW538515
https://identifiers.org/ncbi/insdc:MW548523
https://identifiers.org/ncbi/insdc:MW548524
https://identifiers.org/ncbi/insdc:MW548525
https://identifiers.org/ncbi/insdc:MW548526
https://identifiers.org/ncbi/insdc:MW548527
https://identifiers.org/ncbi/insdc:MW548528
https://identifiers.org/ncbi/insdc:MW548529
https://identifiers.org/ncbi/insdc:MW548530
https://identifiers.org/ncbi/insdc:MW548531
https://identifiers.org/ncbi/insdc:MW548532
https://identifiers.org/ncbi/insdc:MW548533
https://identifiers.org/ncbi/insdc:MW526257
https://identifiers.org/ncbi/insdc:MW538514
https://identifiers.org/ncbi/insdc:MW537582
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cetyltrimethylammonium bromide as a detergent-based extraction buffer 
and polyvinylpyrrolidone, which is added to remove phenolic compounds 
from plant DNA extracts [15, 16]; PCR: Polymerase chain reaction; NexteraXT: 
NexteraXT DNA library preparation kit enables sequencing of small genomes, 
PCR amplicons, and plasmids (Illumina); Miseq: Illumina Miseq Next Genera-
tion Sequencer is an integrated instrument that performs clonal amplification, 
genomic DNA sequencing, and data analysis with base calling, alignment, 
variant calling, and reporting in a single run (Illumina).

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13104- 021- 05590-z.

Additional file 1. Table of information about the plant specimens used 
for rbcl sequencing.
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