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Abstract 

Objectives: Development of sequencing technology has opened up vast opportunities for tree genomic research 
in the tropics. One of the aforesaid technologies named ONT (Oxford Nanopore Technology) has attracted research-
ers in undertaking testings and experiments due to its affordability and accessibility. To the best of our knowledge, 
there has been no published reports on the use of ONT for genomic analysis of Indonesian tree species. This progress 
is promising for further improvement in order to acquire more genomic data for research purposes. Therefore, the 
present study was carried out to determine the effectiveness of ONT in generating long-read DNA sequences using 
DNA isolated from leaves and wood cores of Macassar ebony (Diospyros celebica Bakh.).

Data description: Long-read sequences data of leaves and wood cores of Macassar ebony were generated by using 
the MinION device and MinKnow v3.6.5 (ONT). The obtained data, as the first long-read sequence dataset for Macas-
sar ebony, is of great importance to conserve the genetic diversity, understanding the molecular mechanism, and 
sustainable use of plant genetic resources for downstream applications.
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Objective
The third-generation sequencing from Oxford Nanopore 
Technologies (ONT) that is capable of generating long-
read sequences was applied to fill the existing technologi-
cal gaps, particularly with respect to capital cost, use of 
native DNA/RNA samples, simplicity, portability, ease of 
use for library preparation, etc. In particular, these tech-
nologies provided an on-site analysis that is of a signifi-
cant advantage considering possible constraints due to 
existing gaps in the current regulation (e.g. Nagoya Pro-
tocol and others) on sample transfer permits either from 
field to laboratory, both within the country and overseas 

[1, 2]. The use of ONT on-site required fewer efforts in 
arranging the administration process for sample transfer, 
hence these functions enabled to accelerate data genera-
tion for various immediate needs, ones of which were 
urgent decision-making for species identification and 
conservation and even for on-site forensic investigation. 
The ONT could also be used in a hybrid system with 
other sequencing platforms, such as short-read sequenc-
ing in order to analyze missing fragments, structural vari-
ations, etc. [3]. In the tropics, research on the use of ONT 
to dissect biodiversity has been still limited due to the 
new finding scarcity, especially in regards to tree genomic 
variation analysis. Associated problems such as DNA/
RNA yields and quality have been still consistently found 
depending on species and sample sources led by mainly 
more complex chemical compounds (such as phenols) 
and samples’ accessibility. In addition, site conditions 
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might also influence the DNA yields forcing the use of 
only one general protocol across the samples. Macassar 
ebony—an endemic and vulnerable species in Sulawesi 
(Celebes), Indonesia, was utilized in the experiment and 
designed to determine the utilization efficacy aiming for 
long-read sequencing using samples from both leaves 
and small wood cores collected in Celebes [4]. Results of 
this study are presented in Table 1.

Data description
Total genomic DNA from 15 individuals of Macas-
sar ebony (Diospyros celebica Bakh.) leaves (n = 11) and 
wood core (n = 4) collected by using Pickering Punch in 
three provinces in Indonesia, namely Central Sulawesi, 
West Sulawesi, and South Sulawesi, were extracted using 
a modified CTAB methods [5] in which the CTAB buffer 
contained CTAB 10%, Tris HCl, NaCl 5 M, EDTA 0.5 M, 
PVP 1%, β-Mercaptoethanol, and  dH2O. DNA qual-
ity was evaluated by electrophoresis using a Gel Doc 
EZ System (Bio-Rad, USA) and DNA concentration was 
measured by using NanoPhotometer NP80 (IMPLEN, 
Germany).

The library preparation of genomic DNA sample was 
followed the Nanopore Protocol for Native barcoding 
genomic DNA (with EXP-NBD104 and SQK-LSK109), 
version NBE_9065_v109_revJ_23May2018. Sequenc-
ing was done in two rounds using two flowcells (FLO-
MIN106). The list of samples per flowcell, as well as the 
native barcode (NBD01–NBD12) used in the study, were 
listed in Data File 1.

The sequencing run of genomic DNA samples was per-
formed using the MinION device and MinKnow v3.6.5. 

Sequencing was terminated after no more pores actively 
sequenced the DNA. The high-accuracy base-calling 
mode was used to base-call the signal in FAST5 files and 
outputted FASTQ files. Samples were separated accord-
ing to each barcode, where afterwards the barcodes were 
set to automatically trimmed from the reads (Data set 1). 
All samples were combined using cat command on Linux 
Mint terminal and analyzed by using NanoStat v1.2.1 
to assess the reads quality and reads’ statistics. Mean-
while, distribution plots were generated by using NanoP-
lot v1.31.0 [6] (Data file 2). We obtained 302  567 reads 
with 99.5% reads quality > Q7 (nanopore default passed 
quality). After statistic inspection, all reads quality was 
filtered through NanoFilt v2.7.1 [6]. Reads with Q-score 
lower than 7 and less than 500 bp were filtered out, with 
parameter –headcrop and –tailcrop of 10 were applied. 
Reads filtering resulted in 134 220 reads, then subject to 
correction, trimming and De novo assembly using Canu 
v2.0 [7] with option of genome Size = 800 m. Another De 
novo long-reads assembler was applied to compare the 
contig assemblies from plant DNA using SMARTdenovo 
[8] with minimum read length (−J) 2  000. SMARTde-
novo utilized corrected reads ’step from Canu correction 
stage, thus expected to result in better outcome than the 
Canu assembly’s. The contig assemblies were 358 (N50 
6.5 kb, GC 39.91%) and 39 (N50 12.7 kb, GC 41.14%) for 
Canu and SMARTdenovo respectively. The draft assem-
bly then was polished (corrected) against the individual 
sequencing reads using medaka_consensus v1.0.3 [9] 
with parameter model for nanopore sequencing (−m) 
r941_min_high_g330 (Data file 3). The resulting polished 
assembly statistics was calculated using QUAST v5.0.2 

Table 1 Overview of data files/data sets

Label Name of data file/data set File types (extension) Data repository and identifier (DOI or accession 
number)

Data file 1 List of ebony samples and Nanopore Native bar-
codes

Compressed XLSX file (.zip) https ://doi.org/10.6084/m9.figsh are.13027 991.v1 [13]

Data file 2 Raw reads statistics and plots (quality score, reads 
length, reads distribution)

Compressed TXT, PNG and 
HTML files (.zip)

https ://doi.org/10.6084/m9.figsh are.13028 069.v1 [14]

Data file 3 Polished De novo genome contig assemblies of 
both assembler

Compressed FASTA files (.zip) https ://doi.org/10.6084/m9.figsh are.13031 195.v1 [15]

Data file 4 Statistics of corrected contig assemblies with Diospy-
ros celebica chloroplast

Compressed PDF file (.zip) https ://doi.org/10.6084/m9.figsh are.13028 177.v1 [16]

Data file 5 Statistics of corrected contig assemblies with Diospy-
ros lotus genome

Compressed PDF file (.zip) https ://doi.org/10.6084/m9.figsh are.13028 180.v1 [17]

Data file 6 Constructed scaffolds from both assembler Compressed FASTA files (.zip) https ://doi.org/10.6084/m9.figsh are.13031 702.v1 [18]

Data file 7 Statistics of scaffolds assemblies with Diospyros 
celebica chloroplast

Compressed PDF file (.zip) https ://doi.org/10.6084/m9.figsh are.13031 693.v1 [19]

Data file 8 GenBank annotation from scaffolds assemblies Compressed GB files (.zip) https ://doi.org/10.6084/m9.figsh are.13031 708.v1 [20]

Data file 9 Annotation visualization from scaffolds assemblies Compressed JPG files (.zip) https ://doi.org/10.6084/m9.figsh are.13031 714.v1 [21]

Data set 1 Raw genomic DNA reads (trimmed barcode) FASTQ files (.fastq) DNA Data Base of Japan (DRP006615) https ://ident 
ifier s.org/insdc .sra:DR006 615 [22]
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[10], with references of Diospyros celebica chloroplast 
(Data file 4) and Diospyros lotus genome (Data file 5). 
This statistic calculation informed how much reference 
genome fraction covered by the contig assemblies. The 
polished contigs then were chosen to construct scaffold 
using LINKS v1.8.7 [11] with default parameter (Data 
file 6). The resulted scaffolds were 266 (N50 11.3 kb, GC 
39.91%) and 33 (N50 17.8 kb, GC 41.14%) for Canu and 
SMARTdenovo respectively. The longest scaffolds assem-
blies from both assembler (Canu 141.6  kb, SMARTde-
novo 145 kb) were validated with QUAST v5.0.2 with D. 
celebica chloroplast to check the genome fraction that 
scaffolds covered (Data file 7). These scaffolds assemblies 
were then annotated by using GeSeq platform for Orga-
nellar Genomes [12], resulted in the GenBank annotation 
(Data file 8) and their visualization (Data file 9).

Limitations
The long-read sequencing of the Macassar ebony tree 
equipped with nanopore sequencing was quite chal-
lenging. Extraction of genomic DNA shall be optimized 
to obtain high-quality gDNA without excessive frag-
mentation. The resulting fragmented DNA required to 
be removed prior to library preparation as they might 
occupy nanopores within the flowcells and cause too 
many short reads across the sequencing outputs. The 
library preparation shall be optimized as well, for exam-
ple, the DNA concentration was measured with a spec-
trophotometer, which could lead to a biased number of 
the aforementioned concentration. DNA fluorometer 
was preferred to accurately calculate DNA concentration. 
The correct DNA concentration loaded into the MinION 
flowcell would enable the optimal DNA sequencing pro-
cess and pores occupancy. Achieving higher sequencing 
throughput is necessary to improve the read accuracy 
limitation of MinION as been observed in this study.
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