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Reducing Glut2 throughout the body does 
not result in cognitive behaviour differences 
in aged male mice
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Abstract 

Objectives:  GLUT2 is a major facilitative glucose transporter, expressed from the SLC2A2 gene, with essential roles in 
the liver. Recent work in mice has shown that preventing Glut2 production in specific neuronal populations increases 
sugar-seeking behaviour, highlighting the importance of Slc2a2 gene expression in the brain. It implies that reduced 
GLUT2 in the brain, due to genetic polymorphisms or disease, impacts health through behaviour change. Defects in 
glucose transport in the brain are observed in conditions including type-2 diabetes and dementia. Few studies have 
directly examined the effect of modulating neuronal glucose transporter expression on cognitive function. The aim of 
this study was to investigate whether inactivating one Slc2a2 allele throughout the body had major effects on cogni-
tion. Cognitive tests to assess recognition memory, spatial working memory and anxiety were performed in Slc2a2 
whole-body heterozygous mice (i.e. reduced Glut2 mRNA and protein), alongside littermates expressing normal levels 
of the transporter.

Results:  No significant effects on neurological functions and cognitive capabilities were observed in mice lack-
ing one Slc2a2 allele when fed a chow diet. This suggests that the minor variations in GLUT2 levels that occur in the 
human population are unlikely to influence behaviour and basic cognition.
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Introduction
Maintenance of glucose homeostasis is essential for 
survival and this is dependent on the action of cellu-
lar glucose transporters [1–5]. A major class of glucose 
transporters are the GLUT (glucose transporter) family, 
which transport glucose across the plasma membrane via 
facilitative diffusion [6]. GLUT2, a low affinity, high occu-
pancy family member, is the major glucose transporter 
in the liver, where it is required for appropriate glucose 
uptake by hepatocytes, while in mice Glut2 also has an 

essential role in glucose-stimulated insulin secretion in 
the pancreas [6, 7].

Mutations in the human SLC2A2 gene (which encodes 
for GLUT2 protein) cause Fanconi-Bickel syndrome 
(hepatomegaly and renal disease) and have been rarely 
found as a cause of neonatal diabetes. Genome-wide 
association studies indicate that SLC2A2 sequence vari-
ation associates with risk of fasting hyperglycaemia, 
progression to type 2 diabetes, hypercholesterolaemia 
and cardiovascular diseases. We previously showed 
that single nucleotide polymorphisms (SNPs) found at 
the SLC2A2 locus, that result in reduced SLC2A2 gene 
expression, are associated with increased glycaemic 
response to the major diabetes therapeutic, metformin 
[8]. The importance of this transporter is illustrated by 
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the fact that Glut2 null mice are not viable [6], while 
deletion of Slc2a2 expression in neurons of the para-
ventricular nucleus results in increased sucrose-seeking 
behaviour in mice [9]. This latter finding suggests that 
Glut2 levels have a major influence on neuronal function. 
While most glucose transport in the brain is mediated 
through GLUT1 and GLUT3, there is intriguing evi-
dence that specific neuronal populations have a reliance 
on Glut2 that makes them more vulnerable to patho-
genic mechanisms underlying Alzheimer’s disease [10, 
11]. In addition, defective glucose transport is observed 
in Alzheimer’s disease [12]. However, there has been lim-
ited investigation into how altered glucose transporter 
expression in the brain directly impacts upon behaviour 
and cognition. The aim of the study presented here was 
to examine the effects of reducing Glut2 production in 
the brain on behaviour and basic cognition in mice. We 
generated a mouse with a whole-body reduction in Glut2 
(Slc2a2+/−), which models the changes in GLUT2 expres-
sion caused by common SNPs found within the human 
gene.

Main text
Animal procedures
All animal care protocols and experimental procedures 
were performed in accordance with the UK Home Office 
Animal Scientific Procedures Act (1986), the European 
Directive of the Protection of Animals used for Scien-
tific Purposes 2010/ 63/ E, and with the approval of the 
University of Dundee Animal Ethics Committee. All per-
sonnel performing procedures are holders of UK Home 
Office personal licences. Work was performed under 
Home Office licence PE82c1898.

Slc2a2+/− cryopreserved mouse sperm 
(C57BL/6  N-Slc2a2 < tm1b(KOMP)Wtsi > /B08, Riken 
reference number RBRC06334) was purchased from the 
Riken BioResource Center (Tsukuba, Ibaraki, Japan) and 
used to generate pups via in  vitro- fertilisation (IVF) 
using C57BL/6 wild-type (WT) females (C57BL/6J, 
JAX™, strain code 632, bred and maintained from the 
original JAX strain code 000,664; this strain was intro-
duced to Charles River Laboratories France in 1981 and 
UK in 2004. Breeding is in accordance with The Jack-
son Laboratory genetic management system. Breeding 
pairs were purchased from Charles River, Elphinstone, 
Tranent, Scotland, UK, and a colony maintained within 
the University of Dundee Resource Unit). Resultant 
Slc2a2+/− animals were crossed with this same C57BL/6J 
WT strain to obtain Slc2a2+/+ (littermate controls) and 
Slc2a2+/− pups.

For experimental procedures male Slc2a2+/+ (n = 8) 
and Slc2a2+/− (n = 13) littermates were group housed 
(max 4 per cage- mixed genotype housing) and 

maintained at 21 °C with 12-h light/ dark cycle and had 
ad  libitum access to water and standard chow diet (SDS 
Ltd, Witham, Essex, UK). Animals were weighed regu-
larly from age 10  weeks. Behavioural tests were per-
formed as per schematic in Additional file  1: Figure S1 
in the morning of test days (before 12 pm). At week 48, 
animals were killed by exposure to a rising concentra-
tion of CO2 followed by cervical dislocation, following a 
5  h fast. Fasted trunk blood sample was collected, after 
culling, into a lithium-heparin blood tube (BD, Wok-
ingham, Basingstoke, England, UK), incubated at room 
temperature for 30  min and spun at 4  °C at 7500  rpm 
for 15  min. Collected blood serum was used to deter-
mine fasted insulin levels by enzyme-linked immuno-
sorbent assay (ELISA; Crystal Chem, Elk Grove Village, 
IL, USA) to manufacturers’ instructions. Fasting insulin 
resistance index (FIRI) was calculated as standard ((fast-
ing insulin × fasting glucose)/25) [13]. Behavioural data 
was captured using a Handycam HDR-CX405 camcorder 
(Sony, Minato City, Tokyo, Japan) and with Anymaze 6.4 
software (Stoelting Co., Wood Dale, IL, USA). Data was 
analysed using Prism 8 (Graphpad) and are presented as 
mean +/− SEM and compared as indicated in relevant 
figure legends.

There are no physiological differences between Slc2a2+/+ 
and Slc2a2+/− animals maintained on chow diet
Animals were maintained on chow diet up to 48 weeks of 
age. No significant differences were noted in body mass 
between Slc2a2+/+ and Slc2a2+/− groups (Additional 
file 1: Figures S2A and B), although there was a trend for 
increased weight gain in Slc2a2+/− animals (Additional 
file 1: Fig. S2C; p = 0.0597, t = 2.003, df = 19). There were 
no significant differences between the mean fasting blood 
glucose (FBG) levels (Additional file  1: Figure  2D), cir-
culating insulin levels (Additional file  1: Figure  S2E) or 
FIRI (Additional file 1: Figure S2F) of the Slc2a2+/− and 
Slc2a2+/+ animals at 48 weeks of age. These results show 
that inactivating an allele of Slc2a2 does not affect body 
mass or glucose homeostasis in animals receiving chow 
diet.

Inactivating one allele of Slc2a2 does not affect spatial 
working memory in male mice
To examine effects on spatial working memory, animals 
were tested using the T-Maze spontaneous alternation 
task at 18 weeks (Additional file 1: Figure S1A). Animals 
were allowed to spontaneously explore the maze for 15 
individual trials (returning to start at the end of each test 
of each trial by themselves). No significant differences 
were observed between the two groups in the percent-
age alternation (Fig.  1a), which both groups performed 
above the level of chance (50%, as indicated by blue 
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dashed line). Both groups performed poorly in the num-
ber of Left–Right-Left or Right-Left–Right sequences 
performed (Fig.  1b), which were not performed above 
the level of chance (33%, indicated by blue dashed line). 
Slc2a2+/− animals took a significantly longer amount of 
time to complete 15 trials of the test (Fig. 1c), with longer 
mean trial time (Fig. 1d) but no differences in the latency 
to leave the start box during each of the 15 trials before 
they explored the rest of the maze (Fig. 1e). Overall, these 
results suggest that inactivating one allele of Slc2a2 has 
no effects on spatial working memory in mice.

Inactivating one allele of Slc2a2 does not affect anxiety 
behaviour in male mice
To further investigate potential behaviour differences 
between the two groups, animals were tested with the 
elevated plus maze at the age of 18  weeks (Additional 

file  1: Figure S1B) to assess anxiety-related behaviours. 
No differences were observed between the two groups 
in any of the elevated plus maze measurements: distance 
travelled (Fig.  2a), average speed (Fig.  2b), number of 
entries into the different areas of the maze: neutral zone 
(Fig. 2c), open arm (Fig. 2d) and closed arm (Fig. 2e) or 
the percentage time spent within each zone (Fig.  2f–h). 
This suggests that inactivating one allele of Slc2a2 has no 
effects on anxiety-related behaviours.

Inactivating one allele of Slc2a2 does not affect recognition 
memory in male mice
The novel object recognition (NOR) test is an established 
procedure to assess recognition memory [14]. Animals 
were assessed using both a 2  min and a 24  h NOR (as 
per Additional file  1: Figure  S1C). No significant differ-
ences were observed during the 2  min NOR conducted 

a b c

d e

Fig. 1  Inactivating one allele of Slc2a2 does not affect spatial working memory in male mice. a Percentage alternations per group. Test performed 
at week 18. Blue dashed line indicates level of chance (50%). Both groups performed above level of chance: Slc2a2+/+ p = 0.0047, t = 4.071, df = 7 
and Slc2a2+/− p = 0.0214, t = 2.645, df = 12 (1 sample t-test). b Percentage LRL/ RLR sequences per group. Blue dashed line indicated level of 
chance (33%). Neither group performed above level of chance: Slc2a2+/+ p = 0.3365, t = 1.033, df = 7 and Slc2a2+/− p = 0.1150, t = 1.700, df = 12 (1 
sample t-test). c Total time to complete 15 trials of the test: p = 0.0472, t = 2.122, df = 19. d Average time per trial. E: Average latency to leave start 
box
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at 33 weeks between Slc2a2+/+ and Slc2a2+/− groups in 
the discrimination index (the difference in time spent 
exploring novel and familiar objects; DI- Fig. 3a) or in the 
total time spent exploring the objects in either the encod-
ing or retention/ retrieval phases of the tests (Fig.  3b). 
Both groups performed the task above the level of chance 
(DI of 0, meaning animals spent equal amounts of time 
exploring objects in the retention/ retrieval phase of the 
task). However, both groups performed equally poorly 
in discriminating between objects during the 24 h NOR 
conducted at 37 weeks (Fig. 3c; neither group performed 
above the level of chance). Slc2a2+/− animals, though, 
did spent less total time exploring the objects during the 
10  min retention/retrieval phase of this task compared 
to the encoding phases (Fig.  3d). To revisit the spatial 
memory domain in the animals (as explored during the 
T-maze task), the object location test was also performed 
at 42 weeks (Additional file 1:  Figure S1D). Again, no dif-
ferences were observed between the two groups in either 
DI (Fig.  3e) or total exploration time measurements 
(Fig. 3f ), however, the Slc2a2+/+ group did not perform 

the task above the level of chance and so it is difficult 
to draw clear conclusions from this task. Overall, these 
results show that inactivating one allele of Slc2a2 has no 
effect on non-spatial recognition memory in mice.

Conclusions
Most human diseases, especially chronic, age-related 
disease, present with minor changes in molecular 
pathways, which make an individual more vulnerable 
to environmental insults. This can be due to SNPs in 
key genes, that have a minor effect on the expression 
or function of that gene product. We have previously 
reported that SNPs in the GLUT2 gene (Slc2a2) influ-
ence response to the main drug for type 2 diabetes. Our 
results presented here show that minor alterations in 
Glut2 expression, such as those associated with spe-
cific SNPs within the human gene, are unlikely to influ-
ence “spontaneous memory and anxiety behaviours”. 
However, to establish the influence on response to 

a b c d
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Fig. 2  Inactivating one allele of Slc2a2 does not affect anxiety-related behaviour in male mice. a Total average distance travelled in the maze over 
10 min. Test performed at week 18. b Average speed. c Number of entries into neutral zone. d Number of entries into open arm. e Number of 
entries into closed arm. f Percentage time spent in neutral zone. G: Percentage time spent in open arm. h Percentage time spent in closed arm



Page 5 of 6Morrice et al. BMC Res Notes          (2020) 13:438 	

challenges, such as poor nutrition, disease or infection, 
will require additional studies.

Limitations
There are a number of limitations to the work presented 
in this study. Firstly, the tests were performed only on 
male animals [15]. Also, the animals in this study were 
on a regular chow diet and it is possible that effects of 
reduced Glut2 on cognition may be more pronounced 
in animals with perturbed glucose homeostasis. Future 
studies should include diet-induced obese animals, 
or animals with diabetes, to further investigate such 

influences. This study was designed to model the effects 
of common SNPs within the human population, which 
result in altered levels of GLUT2 expression. In this 
study, the removal of only one Slc2a2 allele resulted in an 
approximately 30% reduction in Slc2a2 mRNA expres-
sion (data not shown), similar to some changes in mRNA 
seen with specific SNPs in the human population. In con-
trast, the neuron-specific studies performed by Labouebe 
and colleagues, which resulted in changes to sucrose-
seeking behaviour were performed with complete lack of 
Glut2 in those cells [9]. It is therefore possible that any 
influence of this transporter on behaviour only becomes 

a b c
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Fig. 3  Inactivating one allele of Slc2a2 does not affect recognition memory in mice. a Discrimination index (DI) of 2 min novel object recognition 
(NOR): average results from 2 repeats of the experiment during week 33. Both groups performed the task above the level of chance (DI = 0): 
Slc2a2+/+ p = 0.0067, t = 3.805, df = 7 and Slc2a2+/− p = 0.004, t = 4.852, df = 12. b Exploration time of each group within the Encoding (E) and 
Retention/ Retrieval (R/R)t phases of 2 min NOR test: average results from 2 repeats of the experiment. c DI of 24 h NOR: results from 1 experiment 
during week 37. Neither group performed the task above the level of chance: Slc2a2+/+ p = 0.7869, t = 0.2809, df = 7 and Slc2a2+/− p = 0.8189, 
t = 0.2340 and df = 12. d Exploration time of each group within the Encoding and Retention/ Retrieval phases of 24 h NOR: average results from 
1 test. Significant differences assessed by one-way ANOVA with multiple comparisons; *: p = 0.0338 vs Slc2a2+/+ trial (q = 4.034; df = 38); $$: 
p = 0.0028 vs Slc2a2+/− trial (q = 5.374; df = 38). E: DI of 2 min object placement test: results from 1 experiment during week 42. Slc2a2+/+ group 
did not perform the task above the level of chance: p = 0.1698, t = 1.530, df = 7. Slc2a2+/− group did perform the task above the level of chance: 
p = 0.0028, t = 3.745, df = 12. F: Exploration time of each group within the Encoding and Retention/ Retrieval t phases of 2 min object placement 
test: results from 1 experiment
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apparent when the receptor is more dramatically per-
turbed. Equally, the group sizes in our study are relatively 
small and not powered to detect small changes. Finally, 
the behaviour tasks used in the Labouebe study were 
reward-based operant conditioning tasks, compared to 
the spontaneous behaviour tasks used within the study 
presented here, which make direct comparisons more 
difficult. Any future work would benefit from establish-
ing sucrose preference to test the effects of Glut2 defi-
ciency within hypothalamic circuits but differentiating 
from hippocampal circuitry by maintaining separation 
between food motivation and cognitive testing [16]. 
Glut2 expression in the brain is predominantly in the 
astrocytes, with only limited expression within specific 
neuronal populations [17]. A more comprehensive anal-
ysis of the effect of neuronal Glut2 deletion on glucose 
uptake and metabolism across the brain would inform a 
more targeted approach to dissect the role of this trans-
porter in behaviour and cognition.
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