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Abstract 

Objective: Virulence factors (VFs) among the clinical strains of enterococci play a vital role in pathogenesis. This 
study was aimed to screen for cylA, asa1, gelE, esp and hyl among Enterococcus faecalis (n = 89) and E. faecium 
(n = 51) by multiplex PCR. The previously reported multiplex PCR was modified to 2 duplex (asa1 and gelE, cylA and 
esp) PCRs and 1 simplex (hyl) PCR. The idea of the modification of the multiplex PCR proposed here emerged in the 
course of the research study when majority of the isolates which phenotypically exhibited virulence traits were found 
to be negative for the respective gene.

Results: cylA, gelE and asa1 were significantly predominant in E. faecalis (59.55%, 85.39%, 86.51%) than E. faecium 
(1.96%, 60.78%, 9.80%) (p < 0.0001, p = 0.001967, p < 0.0001). hyl was detected in E. faecium (5.9%) only. The number of 
VFs detected in each isolate was recorded as the VF score. E. faecalis isolates had a VF score pattern of score 4 (34.83%), 
score 3 (26.96%), score 2 (28.08%) and score 1 (8.98%) while E. faecium had score 4 (1.96%), score 3 (7.84%), score 2 
(25.49%) and score 1 (41.18%). This modification of the PCR protocol could resolve the problem of decreased detec-
tion of virulence determinants in enterococci.
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Introduction
Enterococcus faecalis and E. faecium, the two most com-
mon species of enterococci that inhabit the gastroin-
testinal tract are a leading cause of opportunistic and 
nosocomial infections in humans. Pathogenesis of ente-
rococci is attributed to an array of virulence factors (VFs) 
viz., aggregation substance (AS), gelatinase (Gel), cytoly-
sin (Cyl), enterococcal surface protein (Esp) and hyaluro-
nidase (Hyl).

Cytolysin elaborated by hemolytic strains of E. faecalis 
contributes to virulence in animal models and in human 

infections [1–3]. The cytolysin operon is a two-com-
ponent system, lysin (L) encoded by cylL1, cylL2, cylM, 
cylB and an activator (A) encoded by cylA [4, 5]. Gelati-
nase encoded by gelE, is an extracellular zinc-endopepti-
dase/protease produced by E. faecalis that is capable of 
hydrolyzing gelatin, collagen, casein, hemoglobin, and 
other peptides [6]. Gelatinase production in E. faecalis 
contributes to virulence in animals and humans [7, 8]. 
Gelatinase damages the host tissue facilitating bacterial 
migration and spread [9], colonisation and persistence 
by biofilm formation [10]. Enterococcal surface protein, 
encoded by esp, is significantly higher among clinical iso-
lates than faecal isolates and is associated with increased 
virulence [11], colonization and persistence in the uri-
nary tract [12] and biofilm formation [13]. Aggregation 
substance, encoded by asa1, facilitates the conjugative 
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transfer of sex pheromone gene-containing plasmids [14] 
and enhances virulence (adherence to renal tubular cells 
[15], heart endocardial cells [16] and internalization by 
intestinal epithelial cells [17]). Hyaluronidase, encoded 
by the chromosomal hyl, is reported to be specific for E. 
faecium [18, 19] and shows homology to the hyaluroni-
dases of other Gram positive cocci [20]. Esp and Hyl are 
known to be specific for E. faecium, while AS, Gel, Cyl, 
Esp for E. faecalis [18, 19].

Though phenotypic and genotypic methods are avail-
able for the detection of VFs, majority of the previous 
studies (Additional file1: Table S1) have adopted the mul-
tiplex PCR protocol described by Vankerckhoven et  al. 
[18]. Nevertheless, in our experience, we found isolates 
which phenotypically exhibited virulence traits were 
found to be negative for the respective gene. In addition, 
non-specific amplifications were observed. Hence, this 
study was designed with slight modifications to the exist-
ing multiplex PCR protocol [18].

Main text
Materials and methods
Clinical samples were collected after obtaining approval 
from the Institutional Ethical Committee, Sree Balaji 
Dental College & Hospital, BIHER, Chennai, India (IEC 
No: SBDCECM106/14/08/dt19.06.2014). A total of 140 
clinical isolates of Enterococci (E. faecalis [n = 89], E. fae-
cium [n = 51] from urine [n = 111], pus [n = 24], body flu-
ids [n = 4] and blood [n = 1]) from patients with urinary 
tract infection, pyogenic wound infection, infected body 
fluids, bacteraemia attending tertiary care hospitals in 
Chennai, South India were included in the study. Species 
identification and characterization was performed as per 
standard biochemical tests [21] and further confirmed 
using Enterococcus Differential Agar supplemented with 
1% 2,3,5-Triphenyl Tetrazolium Chloride (TTC) (HiMe-
dia Laboratories Pvt Ltd, Mumbai, India).

Phenotypic screening of virulence
Hemolysin production was assessed using blood agar 
plates (5% defibrinated sheep blood). A clear zone of 
haemolysis around enterococcal colonies after incuba-
tion at 37  °C for 24  h was scored positive [22]. Gelati-
nase production was detected by stabbing enterococcal 
isolates into 12% gelatin and after incubation at 37 °C for 
24 h, positive gelatinase activity was indicated by lique-
fied gelatin even after refrigeration at 4  °C for 4  h [22]. 
Slime production was detected using Congo Red agar. A 
positive slime layer formation was indicated by black pig-
mented enterococcal colonies after incubation at 37  °C 
for 24 h [23].

Multiplex PCR
DNA was extracted from overnight pure cultures of Ente-
rococcal isolates by boiling lysis method. All Enterococci 
strains were screened for the presence of five VFs encod-
ing genes (asa1, cylA, esp, gelE and hyl) using multiplex 
PCR as previously described [18]. Five primer pairs were 
used to amplify the genes asa1, gelE [18], cylA [24], esp 
[25] and hyl [18]. All the primers used in the study were 
synthesised at Macrogen (South Korea). This multiplex 
PCR is the most commonly used protocol for screening 
of virulence genes among enterococci (Additional file 1: 
Table S1). However, in our study, a very low prevalence of 
the virulence determinants was detected. Isolates which 
phenotypically exhibited the virulence trait was found to 
be negative (gene not detected by the multiplex PCR pro-
tocol) for the respective gene. In addition, non-specific 
amplifications were observed, amplicon size were not 
specific to the one indicated in the reference article [18]. 
Hence, simplex PCR for the individual genes were per-
formed, followed by PCR with all possible combinations 
of the 5 genes. Finally, the following combinations of PCR 
reactions were standardised.

PCR standardization
Three different PCR reactions were standardised [two 
duplex (asa1 and gelE; cylA and esp) and one simplex 
(hyl) PCR]. Each 25 µl PCR reaction was set up with 2 µl 
of DNA template, 10× PCR buffer containing 15  mM 
 MgCl2, 10  pmol of each primer specific for the respec-
tive gene (for duplex 1: asa1, gelE, duplex 2: cylA, esp 
and simplex: hyl (Macrogen, Korea), 0.5  U (for duplex 
1: asa1, gelE and simplex: hyl) and 1U (for duplex 2: 
cylA, esp) of TaqDNA polymerase (Genet Bio Co, South 
Korea), 10 mM of each dNTP (BioBasic, Canada Inc) and 
100 mM  MgSO4 (New England BioLabs Inc, USA).

The cycling conditions include an initial denaturation 
at 95 °C for 5 min, followed by 30 cycles of denaturation 
(94 °C for 1 min), annealing (56 °C for 1 min), and exten-
sion (72 °C for 1 min), and a final extension for 8 min at 
72  °C. PCR was carried out in Veriti™ 96-well Thermal 
Cycler, Applied Biosystem, USA. Known positive and 
negative controls were included for each run. DNA lad-
der, 100-bp (GeNet Bio, South Korea) was included as a 
molecular size marker.

DNA sequencing of virulence genes
PCR amplicons of each gene from representative isolates 
were purified by FavorPrep GEL/PCR Purification kit 
(Favorgen, Taiwan) and sequenced by Sanger sequencing 
method at Macrogen (South Korea) in single directions 
by respective forward primer using ABI  PRISM®BigDye™ 
Terminator and ABI 3730XL sequencer (Applied 
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Biosystems, USA). All the virulence gene sequences 
were compared with known sequences in NCBI Data-
base by using BLAST analysis (http://www.ncbi.nlm.nih.
gov/BLAST /) and the sequences were deposited in the 
NCBI GenBank database. (GenBank Accession numbers: 
MN398378 (asa1), MN398379 (cylA), MN398380 (hyl), 
MN398381 (gelE) and MN420464 (esp). These isolates 
were used as positive controls.

Results
Virulence phenotype
Of the 140 isolates, 58 (41.4%) (E. faecalis (n = 53), E. fae-
cium (n = 5)) isolates were found to be beta-hemolytic. 
All the beta-hemolytic E. faecium isolates were those iso-
lated from urine. Gelatinase was produced by 55 (39.3%) 
isolates (E. faecalis (n = 33), E. faecium (n = 22)). Slime 
production was detected in 130 (92.8%) isolates (E. faeca-
lis (n = 82), E. faecium (n = 48)).

Virulence genotype
Among the 5 virulence determinants screened, asa1 were 
significantly more common in E. faecalis followed by 
gelE, while, gelE was the most common gene followed by 
esp in E. faecium. cylA, gelE and asa1 were significantly 
more common in E. faecalis (59.55%, 85.39%, 86.51%) 
than E. faecium (1.96%, 60.78%, 9.80%) (p < 0.0001, 
p = 0.001967, p < 0.0001). hyl was detected only in E. 
faecium (5.9%) and not in E. faecalis (0%) (p = 0.0465). 
However, no difference was observed in the incidence of 
esp between species ((E. faecalis (53.93%) vs. E. faecium 
(45.09%), p = 0.406164).

Correlation between virulence phenotype and genotype
Among the 53 beta-hemolytic E. faecalis isolates, 48 
(90.6%) harboured the cylA gene. Among the E. faecalis 
isolates, 33/33 (100%) gelatinase producers and 43/56 
(77.8%) non-gelatinase producers harboured gelE. Among 

E. faecium isolates, 14/22 (63.6%) gelatinase producers 
and 17/29 (58.6%) non-gelatinase producers harboured 
the gelE. Among the E. faecalis (n = 82) isolates that were 
slime producers, 45 (54.9%) and 73 (89.02%) harboured 
esp and asa1 while, 3 (42.9%), 4 (57.1%) of the non-slime 
producers (n = 7) possessed esp and asa1 respectively. 
Among the E. faecium isolates, 22/48 (45.8%), 4/48 (8.3%) 
of the slime producers and 1/3 (33.3%), 1/3 (33.3%) of the 
non-slime producers harboured the genes, esp and asa1 
respectively (Table 1).

Virulence score
Majority of the E. faecalis isolates causing UTI elaborated 
VFs compared to E. faecium (p < 0.0001, OR = 163.3333, 
95% CI 20.2715–1316.0268) (Table  2). The number 
of VFs detected in each isolate was recorded as the VF 
score. Majority of the E. faecalis isolates had a VF score 4 
(34.83%), followed by score 3 (26.96%), score 2 (28.08%), 
score 1 (8.98%) and score 0 (1.12%). Nevertheless, the VF 
score pattern exhibited by E. faecium was found to be in 
the reverse order: VF score 4 (1.96%), followed by score 
3 (7.84%), score 2 (25.49%), score 1 (41.18%) and score 0 
(23.53%) (Table 2). VF score 4 and 3 were quite common 
among E. faecalis than E. faecium (p < 0.0001, 0.0124) 
respectively. Nevertheless, VF score 1 was significantly 
associated with E. faecium (< 0.0001) (Table 3).

Discussion
In our study, 39.3% of enterococci (E. faecalis (37.1%), E. 
faecium (43.1%)) were gelatinase producers. Our results 
are in concordance with previous Indian studies that 
have documented a lower incidence of gelatinase produc-
tion in Enterococci [26, 27]. Recent studies have reported 
an incidence of gelE in the range of 31–91.4% (Additional 
file  1: Table  S1). Our molecular studies indicated that 
gelE was the second most common (76.4%) VF detected 
in enterococci, more commonly in E. faecalis (85.39%) 

Table 1 Correlation between virulence phenotype and genotype

P+ phenotypically expressed

P− phenotypically not expressed

G+ Gene detected

G− Gene not detected

Virulence factors 
(encoding gene)

E. faecalis (n = 89) E. faecium (n = 51)

P+ G+ P− G+ P+ G− P− G− P+ G+ P− G+ P+ G− P− G−

Cytolysin (cylA) 48 5 5 31 0 1 5 45

Gelatinase (gelE) 33 43 0 13 14 17 8 12

Slime

 asa1 73 4 9 3 4 1 44 2

 esp 45 3 37 4 22 1 26 2

http://www.ncbi.nlm.nih.gov/BLAST/
http://www.ncbi.nlm.nih.gov/BLAST/
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than E. faecium (60.78%). Among the E. faecalis studied, 
all the gelatinase producers (100%) harboured gelE gene 
while, the reverse was not true. In contrary, 63.6% of the 
gelatinase producing E. faecium isolates harboured gelE 
gene. In concordance with previous reports, gelE was 

present as a silent gene in E. faecalis (77.8%), and E. fae-
cium (58.6%) [18, 28].

In line with previous reports, 41.43% of our ente-
rococcal isolates were beta-hemolytic [26, 27, 29]. In 
our study, of the beta-hemolytic enterococci (41.43%), 
majority were E. faecalis (91.38%) while, only 8.62% 
were E. faecium isolates. Our results corroborate with 

Table 2 Correlation of the virulence score of the enterococci with clinical source

Virulence factor score Species Urine
(n = 111)

Pus
(n = 24)

Blood
(n = 1)

Fluid
(n = 4)

VF score 5
(n = 0)

E. faecalis (n = 0) 0 0 0 0

E. faecium
(n = 0)

0 0 0 0

VF score 4
(n = 32)

E. faecalis
(n = 31)

23 8 0 0

E. faecium
(n = 1)

1 0 0 0

VF score 3
(n = 28)

E. faecalis
(n = 24)

20 2 1 1

E. faecium
(n = 4)

3 1 0 0

VF score 2
(n = 38)

E. faecalis
(n = 25)

21 4 0 0

E. faecium
(n = 13)

8 4 0 1

VF score 1
(n = 29)

E. faecalis
(n = 8)

6 2 0 0

E. faecium
(n = 21)

16 3 0 2

VF score 0
(n = 13)

E. faecalis
(n = 1)

1 0 0 0

E. faecium
(n = 12)

12 0 0 0

Table 3 Comparison of VF scores between E. faecalis vs E. faecium 

* Mann–Whitney U test: comparison of VF scores between E. faecalis vs. E. faecium

** Student’s t test: comparison of 2 means

Virulence score E. faecalis
(n = 89)

E. faecium
(n = 51)

p value OR 95% CI

VF score 5
(n = 0)

0 (0%) 0 (0%) 1* – –

VF score 4
(n = 32)

31 (34.83%) 1 (1.96%) < 0.0001* 26.7241 3.5205–202.8634

VF score 3
(n = 28)

24 (26.96%) 4 (7.84%) 0.0124* 4.3385 1.4112–13.3377

VF score 2
(n = 38)

25 (28.08%) 13 (25.49%) 0.888* 1.1418 0.5228–2.4939

VF score 1
(n = 29)

8 (8.98%) 21 (41.18%) < 0.0001* 0.1411 0.0565–0.3525

VF score 0
(n = 13)

1 (1.12%) 12 (23.53%) 0.000* 0.0369 0.0046–0.294

VF score*
Mean ± SD

2.854 ± 1.040 1.235 ± 0.971 < 0.0001** – –
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previous reports that document a very low frequency of 
cylA among E. faecium compared to E. faecalis (Addi-
tional file  1: Table  S1) Of note, all the beta-hemolytic 
E. faecium were urinary isolates that did not harbour 
the gene cylA. Nevertheless, majority (90.57%) of the 
beta-hemolytic E. faecalis (urine (71.7%), pus (16.98%), 
blood (1.89%)) harboured the cylA gene. This finding is 
of clinical significance as the frequency of death is five 
times higher in an enterococcal infection associated 
with cytolysin-producing strain compared to a non 
cytolysin-producing strain [30]. In our study, cylA was 
present as a silent gene in 13.88%, 2.17% of E. faecalis 
and E. faecium respectively.

Esp encoded by esp is associated with adhesion, colo-
nisation and host immune evasion. Though previous 
reports suggest that esp is more common in E. faecium, 
in our study, incidence of esp was slightly higher in E. 
faecalis (53.93%) than E. faecium (45.09%) [31, 32]. The 
incidence of esp and asa1 shows a wide variation in 
various reports (Additional file 1: Table S1). Among the 
slime producers, 54.9%, 89.02% of E. faecalis isolates, 
and 45.8%, 8.3% of E. faecium harboured esp and asa1 
respectively. In our study, esp and asa1 were found to 
be silent genes in both E. faecium (33.3%, 33.3%) and E. 
faecalis isolates (42.9%, 57.1%). As reported earlier, hyl 
was detected only in E. faecium [33]. Nevertheless, a few 
studies have reported the incidence of hyl in both species 
[29, 34–39]. Significant difference was observed in the 
VF score between species. In line with previous studies, 
E. faecalis (61.8%) were found to be multi-virulent with 
VF Scores 4 or 3 while, VF score 1 was quite common in 
E. faecium (41.18%) [27, 36]. Majority of the urinary E. 
faecalis elaborated multiple VFs compared to E. faecium.

Non-expression of these virulence genes could be 
attributed to a triad of factors, (i) gene expression is trig-
gered in late exponential phase at high cell densities, (ii) 
environmental factors might influence gene expression 
and (iii) in vitro phenotypic testing conditions are differ-
ent from the in vivo conditions [28, 40]. Nevertheless, the 
presence of virulence determinants in the clinical isolates 
might contribute to increased severity as they could be 
expressed under optimum conditions in  vivo. Metadata 
of the previous studies on the detection of virulence 
genes of enterococci by multiplex/duplex/simplex PCR is 
depicted in Additional file 1: Table S1 [18, 27, 29, 33–39, 
41–59].

Conclusion
We report that our simple modification of the existing mul-
tiplex PCR had increased the detection of the enterococcal 
virulence  genes.  Predominance of virulence genes was in 
order of gelE (76.43%) > asa1 (58.57%) > esp (50.71%) > cylA 
(38.57%) > hyl (2.14%). Virulence determinants were more 

common in E. faecalis (asa1 (86.51%), gelE (85.39%), cylA 
(59.55%)) than E. faecium (asa1 (9.80%), gelE (60.78%), 
cylA (1.96%)). hyl was detected only in E. faecium. This 
modified PCR protocol could be useful to resolve the prob-
lem of decreased detection of virulence determinants in 
enterococci.

Limitations of the study
This study lacks the analysis of other virulence factors elab-
orated by enterococci. Also, majority of the study isolates 
were from urine with very less number from other body 
fluids.

Supplementary information
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