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Abstract
Background: Gene expression studies related to cancer diagnosis and treatment are important.
In order to conduct such experiment accurately, absolutely reliable housekeeping genes are
essential to normalize cancer related gene expression. The most important characteristics of such
genes are their presence in all cells and their expression levels remain relatively constant under
different experimental conditions. However, no single gene of this group of genes manifests always
stable expression levels under all experimental conditions. Incorrect choice of housekeeping genes
leads to interpretation errors of experimental results including evaluation and quantification of
pathological gene expression. Here, we examined (a) the degree of GAPDH expression regulation
in Hep-1-6 mouse hepatoma and Hep-3-B and HepG2 human hepatocellular carcinoma cell lines as
well as in human lung adenocarcinoma epithelial cell line (A-549) in addition to both HT-29, and
HCT-116 colon cancer cell lines, under hypoxic conditions in vitro in comparison to other
housekeeping genes like β-actin, serving as experimental loading controls, (b) the potential use of
GAPDH as a target for tumor therapeutic approaches was comparatively examined in vitro on both
protein and mRNA level, by western blot and semi quantitative RT-PCR, respectively.

Findings: No hypoxia-induced regulatory effect on GAPDH expression was observed in the cell
lines studied in vitro that were; Hep-1-6 mouse hepatoma and Hep-3-B and HepG2 human
hepatocellular carcinoma cell lines, Human lung adenocarcinoma epithelial cell line (A-549), both
colon cancer cell lines HT-29, and HCT-116.

Conclusion: As it is the case for human hepatocellular carcinoma, mouse hepatoma, human colon
cancer, and human lung adenocarcinoma, GAPDH represents an optimal choice of a housekeeping
gene and/(or) loading control to determine the expression of hypoxia induced genes in tumors of
different origin. The results confirm our previous findings in human glioblastoma that this gene is
not an attractive target for tumor therapeutic approaches because of the lack of GAPDH regulation
under hypoxia.
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Background
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is
a glycolytic enzyme that possesses diverse functions that
are independent of its role in glycolysis [1]. GAPDH is a
multifunctional enzyme overexpressed in many tumors
and induced by hypoxia in a number normal and malig-
nant cells examined [1]. Experimental data previously
published show that hypoxia induced transcriptional acti-
vation of GAPDH is cell-type specific [2]. GAPDH is con-
sidered to be a "housekeeping gene". Previous
contributions showed that GAPDH expression is regu-
lated by a variety of factors like calcium [3], insulin [4],
and hypoxia [5], although the transcription factor
hypoxia-inducible factor-1 (HIF-1) regulates the expres-
sion of genes which are involved in glucose supply,
growth, metabolism, redox reactions and blood supply.
The HIF family comprises the HIF-1α, HIF-1β, HIF-2α,
and HIF-3α subunits [6]. Under normoxic conditions, the
HIF-1α subunit is undetectable because it undergoes rapid
ubiquitination and proteosomal degradation [7,8].

Hypoxia is characterized by inadequate oxygen delivery to
the tissue with a resulting imbalance between oxygen
demand and energy supply [9]. As a consequence, HIF-1-
regulated hypoxia-induced genes are transcribed [[10-14],
and [15]]. Many of the proteins encoded by these genes
are involved in adaptive responses counteracting a detri-
mental impact of hypoxia, including erythropoiesis, ang-
iogenesis, iron homeostasis, glucose and energy
metabolism, as well as cell proliferation and survival deci-
sions [10].

In human tumors, two types of hypoxia are present, tran-
sient and chronic hypoxia. Transient hypoxia is a tumor
oxygenation status where a temporary reduction in oxy-
gen availability is present. The inadequate vascular geom-
etry relative to the volume of oxygen-consuming tumor
cells creates diffusion-limited O2 delivery, which results in
chronic hypoxia [16,17]. Cells in the hypoxic environ-
ment shift from aerobic citric acid cycle (TCA cycle) to
anaerobic metabolism (glycolysis, also known as Warburg
effect), as a result of chronic hypoxic conditions. The
response to low O2 levels is given by up-regulating the
synthesis of HIF [6]. Tumor microenvironment typically
contains hypoxic regions, since tumor vasculature is dys-
functional and unable to meet the metabolic needs of rap-
idly proliferating cancer cells [18]. Tumor cells are
resistant to therapeutic approaches, like ionizing radia-
tion and chemotherapy. For ionizing radiation the dose
required to produce the same amount of cell killing is up
to three times higher for hypoxic cells than for well-oxy-
genated cells [19]. In glioblastoma, the modification of
tumor oxygenation and thus radiosensitivity is an attrac-
tive approach to improve the prognosis of glioblastoma
patients currently tested in clinical trials [20].

As previously shown [5,21,22], GAPDH expression
increases as a response to the hypoxic development in
endothelial cells. GAPDH regulation by hypoxia appears
in a cell – type specific manner. From previous results, it
was evident that GAPDH expression is induced to a much
lesser extent in fibroblasts and smooth muscle cells than
it is in endothelial cells [23].

In the present study we addressed the question whether
GAPDH expression is up – or down-regulated by hypoxia
in tumor cells of different origin – in vitro. Also, besides
our previous published data [24,25] showing that
GAPDH is not regulated in human glioblastoma under
hypoxic conditions, our findings increases the potential
tumor types where GAPDH represent a suitable loading
control under hypoxic conditions and further, confirm
the hypothesis that GAPDH expression regulation under
hypoxia is a cell-specific posttranscriptional event.

Results
GAPDH mRNA expression is not regulated by hypoxia, in 
vitro in cancer cell lines of different origin
To examine that hypoxic conditions really do not regulate
GAPDH expression, we performed in vitro cell culture
assays with 0.1% O2 with and without re-oxygenation. No
regulatory effect of these different oxygenation conditions
on GAPDH expression was shown by semiquantitative
RT-PCR in the Hep-1-6 mouse hepatoma and in Hep-3-B
and HepG2 human hepato-cellular carcinoma cell lines
(Fig. 1A) as well as in human lung adenocarcinoma epi-
thelial cell line (A-549) and both HT-29 and HCT-116
colon cancer cell lines (Fig. 1C).

Densitometry analysis (see additional files 1, 2, 3, 4, 5)
confirmed these results. Together, these data suggest that
exposure of the tumor cells from different origin to an
extreme hypoxic status (0.1% O2) is not associated with
GAPDH mRNA up-regulation.

Hypoxic conditions do not influence GAPDH protein 
expression in vitro in cancer cell lines from different origin
To exclude translational regulation of GAPDH protein
expression by hypoxic conditions, western-blot analysis
were performed using lysates from tumor cell lines treated
and isolated under identical conditions, in parallel to
those used for semi quantitative RT-PCR analysis. GAPDH
and β-actin were detected and analysed in all samples
from Hep-1-6.

Hep-3-B and HepG2 (Fig. 1B) as well as it was the case in
protein lysates from (A-549), HT29 and HCT-116 (Fig.
1D). The data obtained from examination of the mRNA
level GAPDH expression were confirmed, as protein
expression of all two proteins was very homogeneously
distributed and confirmed by densitometry.
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HIF-1  regulation in different tumor cells as a response to 
hypoxia
Semiquantitative RT-PCR analysis revealed that HIF-1α
was evenly expressed at an oxygen concentration of 0.1%
O2 for up to 24 h of hypoxia and continued a stable
expression upon reoxygenation up to 20 h after 24 hours
of hypoxia in Hep-1-6, Hep-3-B and HepG2 (Fig. 2A) as
well as in (A-549), HT-29 and HCT-116 colon cancer cell
lines (Fig. 2C), where there is no up-regulation of HIF-1α
mRNA in the cell lines examined.

In contrast, and in parallel sets of experiments, HIF-1α
nuclear protein expression was clearly up regulated under
hypoxic conditions and down regulated under reoxygena-
tion or normoxic conditions in Hep-1-6, Hep-3-B and
HepG2 (Fig. 2B) as well as in A-549, HT-29, and HCT-116
(Fig. 2D). The results from nuclear protein expression
analyses confirm oxygen-dependent regulation of HIF-1α
at protein level, and reassure that the experimental set-
tings for expression analysis of GAPDH were suitable to
evaluate regulatory events by hypoxic conditions.

GAPDH mRNA and protein expression under extreme hypoxic (0.1% O2), normoxia and reoxygenation conditions in HepG2, Hep 1-6, Hep-3-B, A-549, HT-29 and HCT-116 cells, in vitroFigure 1
GAPDH mRNA and protein expression under extreme hypoxic (0.1% O2), normoxia and reoxygenation condi-
tions in HepG2, Hep 1-6, Hep-3-B, A-549, HT-29 and HCT-116 cells, in vitro. (A) Semiquantitative RT-PCR analysis 
of GAPDH mRNA expression in HepG2, Hep 1-6 and Hep-3-B (B) Western blot expression analysis of GAPDH protein 
under identical conditions in HepG2, Hep 1-6 and Hep-3-B. (C) Semiquantitative RT-PCR analysis of GAPDH mRNA expres-
sion in A-549, HT-29 and HCT-116, in vitro (D) Western blot analysis of GAPDH protein expression under identical condi-
tions in A-549, HT-29 and HCT-116. Representative experiments out of three for each experimental set.
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Discussion
It has been postulated that GAPDH expression is regu-
lated as a consequence of the hypoxic development of the
cellular environment in vitro [[5,21-23], and [26]]. Several
authors showed in their models that GAPDH mRNA
expression was regulated during hypoxic events. Some
also presented that the application of 18S-, 28S-RNA or β-
actin instead as a loading control for experiments involv-
ing reduced oxygen concentration is more suitable for this
purpose than GAPDH. Housekeeping genes are normally
present in all cells and their expression levels should
remain relatively constant under different experimental

conditions. It is logic that no single housekeeping gene
always possesses stable expression levels under all experi-
mental conditions. Therefore, there is a necessity to char-
acterize the suitability of various housekeeping genes to
serve as internal RNA controls under particular experi-
mental conditions where transcription effects are being
tested.

To exclude a potential influence of oxygen concentrations
on GAPDH expression as a confounding factor we have
previously employed an additional control, 18S RNA, in
experiments of hypoxia-inducible gene expression [6]. In

HIF-1α-mRNA and -protein expression under extreme hypoxic (0.1% O2) and normoxia and reoxygenation conditions in HepG2, Hep 1-6, Hep3B, A-549, HT-29 and HCT-116 cells, in vitroFigure 2
HIF-1α-mRNA and -protein expression under extreme hypoxic (0.1% O2) and normoxia and reoxygenation 
conditions in HepG2, Hep 1-6, Hep3B, A-549, HT-29 and HCT-116 cells, in vitro. (A) Semi quantitative RT-PCR 
analysis of HIF-1α mRNA expression in HepG2, Hep 1-6 and Hep3B (B) Western blot analysis of HIF-1α protein expression 
under identical conditions in HepG2, Hep 1-6 and Hep3B. (C) Semi quantitative RT-PCR analysis of HIF-1α mRNA expression 
in A-549, HT-29 and HCT-116, in vitro (D) Western blot analysis of HIF-1α protein under identical conditions in A-549, HT-29 
and HCT-116. Representative experiments out of three for each experimental set.
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these experiments, expression of GAPDH under different
oxygen concentrations (severe hypoxia, normoxia and
reoxygenation), was compared to the 18S RNA detected.
They showed that GAPDH was not significantly regulated
under hypoxic conditions in a panel of human tumor cell
lines in vitro, and the expression of the gene examined was
not altered after substitution of the GAPDH by the 18S
RNA band with subsequent densitometric evaluation
[21].

GAPDH induction by hypoxia in endothelial cells occurs
via mechanisms other than those involved in other
hypoxia-responsive systems [27]. A lack of regulation of
GAPDH mRNA in response towards hypoxic events has
also previously been demonstrated in the case of articular
chondrocytes [28]. Table 1 summarizes literature data
about GAPDH expression in response to the hypoxic
development of the cellular environment by several
tumor and non-tumor cells.

Our data did not reveal any correlation between hypoxia
induced HIF-1α protein over expression and GAPDH reg-
ulation on mRNA and protein level in vitro in Hep-1-6
mouse hepatoma, Hep-3-B and HepG2 human hepatocel-
lular carcinoma cell lines as well as in human lung aden-
ocarcinoma epithelial cell line (A-549), in addition to
both HT-29, and

HCT-116 colon cancer cell lines. Although we did not
measure oxygenation levels directly in the human tumors,
samples of which were analyzed regarding GAPDH
expression, we considered low-grade astrocytoma and
glioblastoma as tumor entities characterized by modest
hypoxia and severe hypoxia, respectively. Based on these
findings and from other studies, our present results sug-
gest that there is also no hypoxia-dependent regulation of
GAPDH in the tumor cells from different origin examined
in – vitro.

Conclusion
The appropriate choice of an internal standard is critical
for quantitative protein and RNA analyses. However, no
single housekeeping gene always manifests stable expres-
sion levels under all experimental conditions. Expression
of GAPDH represents one of the alternatives of a house-
keeping gene and can be used as a loading control in
experiments with glioma cells as well as in human hepa-
tocellular carcinoma, mouse hepatoma human colon can-
cer, and human lung adenocarcinoma. Regulation of
GAPDH mRNA and protein expression as a response to
the hypoxic development in the tumor cell environment
is not an absolute phenomenon, but occurs as a cell-spe-
cific post-transcriptionally regulated event. Therapeutic
strategies for treatment of hepatocellular carcinoma,
human lung cancer or human colon involving GAPDH as

target molecule do not represent a valid approach in con-
junction with tumor hypoxia.

Methods
Cell and culture and hypoxia treatment
Early-passage human malignant lung cancer cell line A-
549 as well as HT-29 and HT-116 from the American Type
Culture Collection (ATCC, Rockville, MD) were grown on
glass Petri dishes in Dulbecco's modified Eagle's medium,
supplemented with 10% fetal bovine serum (FBS) and
non-essential amino acids. Additionally, all culture media
were supplemented with penicillin (100 IU/ml)/strepto-
mycin (100 μg/ml) and 2 mM L-glutamine. Cells were
treated with in-vitro hypoxia for 1, 6 or 24 hours at 0.1%
O2 in a Ruskinn (Cincinnatti, OH, USA) Invivo2 hypoxic
workstation as previously described [29-32]. For reoxy-
genation experiments, dishes were returned to the incuba-
tor after 24-hour hypoxia treatment.

Preparation of cell lysates, nuclear cell extracts and 
immunoblotting
Cell lysates and nuclear extracts were prepared, stored and
blotted using the similar techniques, antibodies, proce-
dures and loading controls as conducted previously [25].

Isolation of total RNA from tumor cell lines
Total RNA was isolated from cultured tumor cells as
reported previously [6] and described in [25,31], includ-
ing the digestion of contaminating DNA with the pro-
vided DNase, following the manufacturer's instructions.

HIF-1 , -actin and GAPDH mRNA expression levels in 
tumor cell lines from different origin by semiquantitative 
RT-PCR
To compare the expression of the individual genes exam-
ined, RT-PCR was performed using primers designed
using published information on GAPDH, β-actin and
HIF-1α mRNA sequences in GenBank (accession numbers
NM_002046 for GAPDH, NM_001101 for β-actin and
NM_001530.2 for HIF-1α, respectively). An aliquot of 1–
5 μg of total mRNA from human glioblastoma and astro-
cytoma tissue or glioblastoma cell lines was transcribed at
42°C for 1 h in a 20 μl reaction mixture using 200 U
RevertAid™ M-MuLV Reverse Transcriptase (RT),
oligo(dT)18 primer and 40 U Ribonuclease inhibitor (all
from Fermentas, Ontario, Canada).

For PCR-reactions primers were designed in flanking
exons with Primer3 software (available online http://
frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi): to
produce an 566 bp amplification product of GAPDH, the
forward primer (F1) was 5'-GCAG-
GGGGGAGCCAAAAGGG-3' (nucleotides 393 – 412) and
the reverse primer (R1) 5'-TGCCAGCCCCAGCGT-
CAAAG-3' (nucleotides 939 – 958). To produce an 668 bp
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Table 1: Overview of GAPDH expression in different tumor and non-tumor cell lines as a consequence of the development of a 
hypoxic cellular microenvironment.

Cell line or type Origin Genetic mutations GAPDH 
overexpression

Ref. Ref.

(-/+) under hypoxia GAPDH mutations

U373 – MG Malignant glioma cells 
(Human)

-Apoptosis resistant mutant 
P53

(-) [24,25] [40],

-Peroxisome proliferator 
activated receptor – γ

-PTEN mutation [41],

GaMG Malignant glioma cells 
(Human)

(-) (-) [24,25] [33], [41]

U251 malignant glioma cells 
(Human)

Mutated p53 (-) [24,25] [40]

P14ARF/P16 deletion

Bovine articular 
chondrocytes

Chondrocytes (Bovine) Not determined (-) [37] (-)

LNCap Prostate adenocarcinoma 
cells

(-) (+) [34] [27]

(Human)

ATII Alveolar epithelial cells 
(Rat)

(-) (+) [26] [26]

SiHA Spontaneous cervical 
cancer cells (Human)

(-) (+) [35] [36]

Wild type p53

MBEC4 Brain capillary endothelial 
cells

(-) (+) [37] [37]

(Mouse)

EC Endothelial cells (Human) - Not determined (+) [5], [22], [23], 
[24,39], [39]

[39]

- Mutated epithelial cells are 
present

HepG2 Human Hepatocellular 
Carcinoma

Raf inactive (-) (-) [This Paper] [42], [43]

Wild type p53

Wild type Retinoblastoma

Hep-3-B Human Hepatocellular 
Carcinoma

Wild type p53 (-) [This Paper] [43,44]
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amplification product of β-actin, the forward primer (F1)
was 5'-CGTGCGTGACATTAAGGAGA'-3 (nucleotides 697
– 716) and the reverse primer (R1) 5'-CACCTTCACCGT-
TCCAGTTT'-3 (nucleotides 1345 – 1364) and to produce
an 233 bp amplification product of HIF-1α, the forward
primer (F1) was 5'-TTACAGCAGCCAGACGATCA-3'
(nucleotides 2516 – 2535) and the reverse primer (R1) 5'-
CCCTGCAGTAGGTTTCTGCT-3' (nucleotides 2729 –
2748). The PCR was performed with 25 to 32 cycles with
increments of 5 cycles using PCR systems and reagents
acquired from Promega™ (Promega GmbH, Mannheim,
Germany) and applied according to the manufacturer's
instructions. The PCR products were separated on 2% aga-
rose gels (Sigma-Aldrich, Steinheim, Germany) and visu-
alized by ethidium bromide staining (0.07 μg/ml
ethidium – bromide; Biorad, Munich, Germany).

Densitometry
Signal strengths detection in western blots or in semi-
quantitative RT-PCR was performed with 1D Kodak Image
Analysis Software. The amount of RNA or proteins gave
signals that were measured in Kodak light units (KLU)
and divided by the corresponding signals of the loading
control (β-tubulin and β-actin for western blots and semi-
quantitative RT-PCR) as previously described [11,21]. 3–
4 individual experiments were always performed. The
Mann-Whitney U test for independent samples was used
to analyse these data. P ≤ 0.05 was considered to be statis-
tically significant. All tests were carried out using the sta-
tistical package SPSS, release 12.0.1 for Windows (SPSS
Inc., Chicago, Ill., USA).

Abbreviations
GAPDH: glyceraldehyde-3-phosphate dehydrogenase,
Tumor hypoxia, β-actin, oxygen, glioblastoma multi-

forme, astrocytoma, HIF-1α, 18S RNA, house keeping
gene.
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Absence of RB transcripts

Deletion p53 gene

Hep.1-6 Mouse Hepatocellular 
Carcinoma

- Not determined (-) [This Paper] [45]

HCT-116 Colon cancer cell line 
(Human)

K-ras (+) (-) (-) [46]

HT-29 Colon cancer cell line 
(Human)

(-) (-) (-) [46], [47]

A-549 Lung cancer cell line 
(Human)

k-Ras (+) (-) (-) [47], [48]

c-RAS (+)

Table 1: Overview of GAPDH expression in different tumor and non-tumor cell lines as a consequence of the development of a 
hypoxic cellular microenvironment. (Continued)
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ing results of densitometry evaluation of GAPDH protein expression under 
different oxygenation conditions in different tumor cells, detected via 
western blot.
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Densitometry evaluation of HIF-1  mRNA expression. Results of HIF-
1  mRNA expression densitometry evaluation in tumor cells examined 
under different oxygenation conditions and detected via RT-PCR.
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sitometry evaluation of HIF-1  protein expression under different oxygen-
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