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Abstract
Background: Viruses and small-genome bacteria (~2 megabases and smaller) comprise a
considerable population in the biosphere and are of interest to many researchers. These genomes
are now sequenced at an unprecedented rate and require complementary computational tools to
analyze. "CoreGenesUniqueGenes" (CGUG) is an in silico genome data mining tool that determines
a "core" set of genes from two to five organisms with genomes in this size range. Core and unique
genes may reflect similar niches and needs, and may be used in classifying organisms.

Findings: CGUG is available at http://binf.gmu.edu/geneorder.html as a web-based on-the-fly tool
that performs iterative BLASTP analyses using a reference genome and up to four query genomes
to provide a table of genes common to these genomes. The result is an in silico display of genomes
and their proteomes, allowing for further analysis. CGUG can be used for "genome annotation by
homology", as demonstrated with Chlamydophila and Francisella genomes.

Conclusion: CGUG is used to reanalyze the ICTV-based classifications of bacteriophages, to
reconfirm long-standing relationships and to explore new classifications. These genomes have been
problematic in the past, due largely to horizontal gene transfers. CGUG is validated as a tool for
reannotating small genome bacteria using more up-to-date annotations by similarity or homology.
These serve as an entry point for wet-bench experiments to confirm the functions of these
"hypothetical" and "unknown" proteins.

Background
There is a tremendous increase in the number of genomes
deposited in databases, with the data stream already a
"data tsunami". The universal adoption of the "Next Gen-
eration" DNA sequencing technologies will also allow a
parallel, expedited sequencing of smaller, but important

and relevant, genomes such as from viruses and less than
2 Mb bacterial genomes.

Software tools for taking advantage of these data need to
be developed as well as maintained and upgraded for
additional and more useful functions. In particular, the

Published: 25 August 2009

BMC Research Notes 2009, 2:168 doi:10.1186/1756-0500-2-168

Received: 9 March 2009
Accepted: 25 August 2009

This article is available from: http://www.biomedcentral.com/1756-0500-2-168

© 2009 Seto et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 8
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19706165
http://www.biomedcentral.com/1756-0500-2-168
http://creativecommons.org/licenses/by/2.0
http://binf.gmu.edu/geneorder.html
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Research Notes 2009, 2:168 http://www.biomedcentral.com/1756-0500-2-168
readily available and "user-friendly" computational tools,
preferably platform-independent, are especially needed as
many wet-bench researchers are interested in the informa-
tional content, the "biology," of the genomes rather than
the computational aspects of these genomes.

CGUG is a modification and extension of a web-based
tool, CoreGenes [1], which was limited to genomes of
viruses (ca. 350 kb), including chloroplasts and mito-
chondria. It now determines the "core" set of genes from
a set of up to five bacteria with small genomes (~2 Mb).
Its usefulness in the small genomes community has
attracted researchers with diverse interests and needs. In
response to some of these interests and needs, the tool has
been upgraded with the input of wet-bench researchers.

While bacteria with larger genomes, ca. 4+ Mb, are of
obvious importance, bacteria with genomes of smaller
sizes are also of interest to the community; many of these
are pathogens. Tools for data mining and analysis of the
genomes and proteomes from these and other pathogens
are important not only for understanding their basic biol-
ogy, but also in the applications of these data for molecu-
lar surveillance and detection, including molecular
diagnostics, as well as in drug design and discovery,
including vaccine development.

For understanding the phylogeny of organisms, the deter-
mination of a set of common or "core" genes between a
set of bacterial genomes provides insight into the particu-
lar and specific characteristics of those bacterial species
and of their niches in the biosphere. Core genes are being
used to reconstruct ancestral genomes [2], phylogenies [3]
and organism classifications [4], and should provide
insight into the common requirements of living in similar
niches. The core set of genes has been used to explore the
concept of the "pan-genome" of a bacterial species or a
group of bacteria [5]. Essential genes comprising the min-
imal genome and the minimal life form, e.g., Mycoplasma
genitalium [6] may be a subset of this core.

From a survey of the literature, there are relatively few
tools for the determination of core genes from genomes.
One example is CEGMA [7], which is used to annotate
these in eukaryotic genomes. CEGMA is limited to the
analysis of eukaryotic genomes. It is neither web-based
nor functional across platforms, and must be downloaded
and installed. Other tools have similar limitations or are
confined to precomputed sets of genomes, or are no
longer accessible/supported.

CGUG is a user-friendly "on-the-fly" web-based tool that
determines, parses, analyzes and outputs a set of core
genes from a set of two to five small bacterial genomes. As
a validation of this tool, applications for analyzing

Chlamydophila and Francisella genomes are presented,
including reannotation, especially 'hypothetical proteins',
illustrating the comparisons of newly-determined
genomes with the analysis with older, less well-annotated
genomes; that is, to align and to identify similar and also
putatively similar proteins, previously noted as
"unknown" and "hypothetical" entries. The current and
future versions of this tool are available at http://
binf.gmu.edu/geneorder.html.

In bacteriophage research, to complement the current
classification criteria of the International Committee on
the Taxonomy of Viruses (ICTV) [8] and to understand
them better, a proteome tree analysis based on a BLASTP
algorithm has been constructed earlier [9]. CGUG pro-
vides another independent in situ proteome analysis
approach that incorporates suggestions by several ICTV
members working on bacteriophages [4], noting that
while these genomes contain horizontal transfers that
have made understanding bacteriophage classification
very difficult [4], a proteome-based approach can help to
unravel and to understand their classifications [4].

Implementation
Algorithm
The algorithm is based on the GeneOrder algorithm to
determine gene order and synteny [10]. GenBank acces-
sion numbers are inputted to select data files. These are
extracted from GenBank and an iterative protein similar-
ity analysis is performed for each protein from the query
genome against the reference genome protein database
using BLASTP from WU-BLAST.

Limitations
Currently, CGUG is limited to the analysis of small bacte-
rial genomes (up to 2 Mb). Furthermore, it is limited to
the analysis of five genomes at a time. Both limitations are
due to the computational power and allocated memory of
our server, which frequently comes under heavy user load;
we hope to migrate this tool to a more powerful server.
But for now, this tool is limited by computational
resources (i.e., hardware) that restrict the size and number
of genomes that can be processed. However, during our
test runs, 4 Mb genomes can be processed successfully.
The caveat is that there is a significantly longer processing
time (> 1 hr; there is a queuing e-mail return option).
Despite these limitations, CGUG is a valuable tool for
biologists and this has been illustrated by its use in the
classification of bacteriophages [4].

Validation
Chlamydophila analysis of core genes; annotation applica-
tion Chlamydophila (1 Mb "small" genomes) are interest-
ing because some are responsible for causing diseases in
humans and other mammals: C. pneumoniae is a respira-
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tory pathogen that causes community-acquired pneumo-
nia and bronchitis in humans [11]; C. felis causes
conjunctivitis and upper respiratory tract disease in cats
[12]; C. abortus causes abortions in ruminants such as
sheep and goats [13]; and C. caviae causes conjunctivitis in
guinea pigs [14]. Comparative genomics may provide
insights into their biology as well as pathogenicity.

As an example of the reannotation application, Chlamydo-
phila genomes, Table 1, are analyzed for their core genes,
yielding a set of 839 related proteins, with a stringency or
threshold range setting of "75" (default). A visual inspec-
tion of this output reveals many hypothetical proteins
across the genomes. By looking at a specific row of puta-
tively related genes, a hypothetical protein in one genome
can be identified or annotated by comparison with anno-
tated proteins noted in the other genomes. Figure 1 dis-
plays proteins annotated as O-sialoglycoprotein
endopeptidase in C. pneumoniae J138 and in C. felis Fe/C-
56. The putatively related proteins in the same row are
annotated as hypotheticals for C. abortus S26/3, C. pneu-
moniae AR39 and C. caviae GPIC. These must be analyzed
further, as demonstrated in Figure 2 where CLUSTALW-
based multiple sequence alignment (MSA) is presented.
The extensive conserved residues and alignment suggest
that the hypothetical proteins are likely O-sialoglycopro-
tein endopeptidases as well. Percent identities between
the annotated proteins and the hypothetical proteins are
relatively high, being 67% or greater, again, strongly sug-
gests that these hypotheticals are O-sialoglycoprotein
endopeptidases.

Another example is the annotation of a phosphohydro-
lase in C. pneumoniae J138 and in C. felis Fe/C-56; puta-
tively related proteins are annotated as hypotheticals in

other genomes, Figure 3. Percent identities between the
annotated proteins and the hypothetical proteins are 63%
or greater, suggesting a similar function. Further analyses
must be performed to confirm this; that is, the ultimate
assignments of function lie in wet-bench experiments as
annotation by homology and similarity can only suggest
function.

Genome annotation and methods for annotation have
lagged behind the DNA sequencing technology, in part,
due to the vast unknown of the biology and coding poten-
tial of organisms. Genomes that have been sequenced
more recently take full advantage of newly accumulated
knowledge, and therefore are annotated more completely
and, presumably, with less error. For the non-computa-
tional biologist who is interested in the biology of related
organisms, inspection and alignments of genomes anno-
tated from different time periods may be problematic.
CGUG allows older genomes to be matched with related
and recently sequenced genomes.

Application to the larger Francisella genomes
Francisella genomes are larger, at approximately 1.89 Mb.
Important pathogens are among them, e.g., F. tularensis
causes tularaemia [15]. Three genomes, Table 1, are ana-
lyzed to determine their "core" set of proteins and to note
the reannotation function of CGUG. These organisms
share 1229 core proteins. Figure 4 shows the partial out-
put of the core proteins table, revealing a hypothetical
protein in Francisella tularensis SCHU S4 (published
2004). Annotated counterparts in the recently sequenced
Francisella tularensis holarctica and Francisella tularensis
mediasiatica FSC147 (2007) show this as a major facilita-
tor transporter and drug:H+ antiporter-1, respectively
(Figure 5). Percent identities between the hypothetical
protein and these two annotations are 99.2% and 99.7%,
strongly suggesting that the hypothetical protein is a
transporter protein, again subject to validation by wet-
bench confirmation.

Bacteriophage classifications
Bacteriophages have been intensely studied in the labora-
tory, and their classifications have been debated and
defined under current ICTV criteria, which include physi-
cal, clinical, biochemical and molecular data. Recently,
several bacteriophage researchers have undertaken a re-
evaluation of the bacteriophages given the availability of
genome data and the in situ proteome data. This data
analysis included parsing the numbers of shared similar
and orthologous proteins, using both CoreGenes and
CoreExtractor.vbs [4]. The majority of the accepted rela-
tionships and ICTV classifications have been re-confirmed
for the Podoviridae, although several new insights
appeared. One example, three established genera within
the T7-related bacteriophages are reconfirmed, along with

Table 1: Accession numbers and sizes of five analyzed 
Chlamydophila genomes

Genome Accession # Size (Mb)

Chlamydophila pneumoniae J138 NC_002491 1.23

Chlamydophila felis Fe/C-56 NC_007899 1.17

Chlamydophila abortus S26/3 NC_004552 1.14

Chlamydophila pneumoniae AR39 NC_002179 1.23

Chlamydophila caviae GPIC NC_003361 1.17

Francisella tularensis SCHU S4 NC_006570 1.89

Francisella tularensis holarctica NC_009749 1.89

Francisella tularensis mediasiatica NC_010677 1.89
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five putative novel genera. These proteome-inspired
insights offer a refinement to the ICTV phage classification
and provide a straightforward algorithm for the classifica-
tion of new phage based on their genome and proteome
[4]. The entire set of bacteriophages is being re-examined,
beginning with the Podoviridae, above, and continuing
with the Myoviridae, with plans for Siphoviridae and the
rest.

As an example of CGUG analysis, bacteriophages from
several genera of the Microviridae are analyzed in order to
verify their current classification. These include Microvi-
rus, Chlamydiamicrovirus, Bdellomicrovirus and Spirom-
icrovirus (Table 2). The first sequenced phage of each
genus is used as the reference genome and is analyzed
against the other members for shared similar proteins. A
40% cutoff for shared similar proteins is used for inclu-

A row of output from CGUG showing related proteins from five Chlamydophila genomesFigure 1
A row of output from CGUG showing related proteins from five Chlamydophila genomes. The annotated O-
sialoglycoprotein endopeptidase in C. pneumoniae J138 and C. felis Fe/C-56, respectively, are noted to have identity to counter-
parts noted in three Chlamydophila genomes. These additional columns display the equivalent and presumably related proteins 
which have been annotated originally as "hypothetical" in C. abortus, C. pneumoniae AR39 and C. caviae GPIC. This provides a 
lead for additional bioinformatic analyses and wet-bench investigations.

Multiple sequence alignment of five proteins from Chlamydophila genomesFigure 2
Multiple sequence alignment of five proteins from Chlamydophila genomes. The C. pneumoniae J138 and C. felis Fe/C-
56 proteins displayed are annotated as O-sialoglycoprotein endopeptidase. CGUG analysis reveals counterpart proteins from 
C. abortus S26/3, C. pneumoniae AR39 and C. caviae GPIC that are annotated currently as "hypothetical proteins." As an example 
of additional bioinformatic analysis suggested by CGUG results, these counterparts are aligned to determine their identity to 
O-sialoglycoprotein endopeptidase. Conserved residues are indicated by asterisks. Colons indicate conserved substitutions, 
based on amino acid physico-chemical properties. Dots indicate semi-conserved substitutions.
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sion of a phage in a particular genus. This cutoff criterion
has been used to verify the current classification of phages
of the Podoviridae and to define novel genera as well, and
also has been discussed in detail [4].

Using CGUG, Chlamydia phage 2 and Chlamydia phage
ϕCPG1 share 50% similar proteins with Chlamydia phage
1. Chlamydia pneumoniae phage CPAR39 shares 42% sim-
ilar proteins with Chlamydia phage 1. These values are

above the shared protein cutoff of 40% and verify the cur-
rent ICTV classification in the Chlamydiamicrovirus
genus. Proteins unique to Chlamydia phage 1, with respect
to the other phages, include several hypothetical proteins
and proteins annotated as "structural proteins". Table 3
shows the percent identities and BLAST E-values between
the shared proteins of Chlamydia phage 1 and Chlamydia
phage ϕCPG1. Even though many of the percent identities
are not very high, several of the E-values suggest a signifi-

Output of a row from CGUG showing phosphohydrolase-related proteins from five Chlamydophila genomesFigure 3
Output of a row from CGUG showing phosphohydrolase-related proteins from five Chlamydophila genomes. 
The first two columns display an annotated phosphohydrolase protein in C. pneumoniae J138 and C. felis Fe/C-56, respectively. 
The other three columns show related proteins from the CGUG result, annotated in the genome records as "hypothetical" for 
C. abortus, C. pneumoniae AR39 and C. caviae GPIC. This provides a lead for additional bioinformatic analyses and wet-bench 
investigations.

Output of "core" set of proteins from three Francisella genomesFigure 4
Output of "core" set of proteins from three Francisella genomes. Partial output of the "core" set of proteins from 
Francisella tularensis SCHU S4, Francisella tularnensis holarctica and Francisella tularensis mediasiatica are presented as an example 
of the core set of genes amongst these organisms. Each is linked to their GenBank record and may be retrieved for additional 
bioinformatic analyses.
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cance of alignments and relationships. Caveat: Need wet-
bench experiments to confirm the functional properties.

Bdellovibrio phage ϕMH2K, which belongs to the Bdellom-
icrovirus genus, shares significantly less than 40% similar
proteins with the phages of the Microvirus genus. Specifi-
cally, it shares no similar proteins with ϕX174, G4 and ϕK.
It only shares one protein with α3 and S13. Bdellovibrio
phage ϕMH2K also shares less than 40% similar proteins
with a phage of the Spiromicrovirus genus, Spiroplasma
phage 4. These results justify the current separation of

Bdellovibrio phage ϕMH2K from the Microvirus and Spiro-
microvirus genera. In contrast, Bdellovibrio phage ϕMH2K
shares approximately 45% similar proteins with the
phages of the Chlamydiamicrovirus genera. There are dis-
cussions on merging these two genera; these in silico pro-
teome results from CGUG lend more support to this
position.

Continuing development
Software development is an on-going process, both in
terms of coding and hardware as well as research needs.
CGUG is an example of this, being supported and
updated in response to requests from researchers, e.g., rea-
nalysis of all bacteriophages, and supported in regards to
coding updates. A beta version (CGUG 3.1), at the same
site, is an alternative and complementary upgrade that
will continue to be improved. It provides a more robust
user interface (UI) and aims to improve the user experi-
ence, including a time bar to monitor the run length. It
provides for a better batch analysis, recommended espe-
cially for long running queries, such as for the 2 Mb
genomes, and in preparation for the much larger bacterial
genomes in the future, ca. > 4 Mb. Algorithm enhance-
ments are needed and planned, as the current implemen-
tation does not handle these long running queries
robustly. The feature list below summarizes anticipated
current and continuing work:

• Improve user interface (UI)

+ Show a dynamic status indicator of query
progress

+ Allow user to elect to receive results via email at
any time

• Review implementation of algorithm for perform-
ance

• Add persistence (e.g., database) of queries and
results by user

Row of output from three Francisella genomesFigure 5
Row of output from three Francisella genomes. Counterpart proteins from Francisella genomes are displayed: the first 
column corresponds to Francisella tularensis SCHU S4; the second column corresponds to Francisella tularnensis holarctica; and 
the third column corresponds to Francisella tularensis mediasiatica. As noted in the text, the counterpart annotations provide a 
clue as to the function of the "hypothetical" protein, subject to additional bioinformatic analyses and wet-bench investigations.

Table 2: Accession numbers and sizes of analyzed bacteriophage 
genomes

Genome Accession # Size (bp)

Enterobacteria phage α3 NC_001330 6087

Enterobacteria phage G4 NC_001420 5577

Enterobacteria phage ϕX174 NC_001422 5386

Enterobacteria phage S13 AF274751 5386

Enterobacteria phage ϕK X60323 6089

Chlamydia phage 1 NC_001741 4877

Chlamydia phage 2 NC_002194 4563

Chlamydia pneumoniae phage CPAR39 NC_002180 4532

Chlamydia phage ϕCPG1 NC_001998 4529

Bdellovibrio phage ϕMH2K NC_002643 4594

Spiroplasma phage 4 NC_003438 4421

Enterobacteria phage T7 NC_001604 39,937

Enterobacteria phage P22 NC_002371 41,724

Enterobacteria phage lambda NC_001416 48,502
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CoreGenes was originally designed for a nominal use case
of a single query submission with the user waiting for the
results page to be returned (synchronous mode); 3.1 now
provides a better Batch Analysis mode option where the
user provides their email address for subsequent delivery
of results. The site is redesigned using Google Web Toolkit
(GWT) technology, which is ideal for the requirements of
a potentially long running response in a web-based appli-
cation. GWT is based on Asynchronous JavaScript and
XML (AJAX), which allows for a much more robust and
interactive user experience in a browser-based applica-
tion.

In this beta version (3.1) of CGUG, when the user submits
a query, the web page indicates that the query has begun
executing and will present the user with a query status
indicator (e.g., a "progress bar"), with a message log. Once
a query is submitted and has begun executing, the approx-
imate number of iterations that will be required to com-
plete the computation will be known. With minor
modifications, the Java program that executes the query
on the server will track the iterations completed and
report back to the user progress via "call back" mecha-
nisms that are easily implemented with GWT. Based on
this, a rough "percent complete" indicator is displayed
and will be updated continuously via a client side timer
executing in JavaScript in the browser. Thus, the progress
indicator will update automatically with no action
required by the user, allowing for real-time updating.

Conclusion
CGUG is an in silico genome and proteome data mining
tool that is useful in the analysis of core genes from small-
genome bacteria (~2 Mb), and in the putative assignments
and suggestions of function for genes previously anno-
tated as unknown or hypothetical, taking advantage of the

new genomes and annotations as well as the growing
databases for protein function assignment.

Another dimension of CGUG is realized in the reanalysis
and verification of the current classifications of organ-
isms, for example in the reanalysis and new insights of
bacteriophages.

Availability and requirements
Project name: CGUG

Project home page: http://binf.gmu.edu:8080/
CoreGenes3.0 and general splash page, http://
binf.gmu.edu/geneorder.html (including version 3.1)

Operating system(s): Platform independent web-based

Programming language: Java, XML

Any restrictions to use by non-academics: License required
for commercial usage
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Table 3: Percent identities and E-values between shared proteins of Chlamydia phage 1 and Chlamydia phage ϕCPG1

Chlamydia phage 1 Chlamydia phage ϕCPG1 % identity E-value

VP1 hypothetical protein 49.0 e-160

VP2 capsid protein VP2-related protein 24.6 2e-25

VP3 capsid protein VP3 25.3 3e-13

hypothetical protein nonstructural protein 60.0 2e-7†

hypothetical protein hypothetical protein 18.9 7e-21

nonstructural protein nonstructural protein 30.2 3e-8

The "†" indicates that the E-value was obtained with the low complexity filter in bl2seq turned off. This was done because the proteins are short (36 
amino acids).
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