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Abstract
Background: Many clustering procedures only allow the user to input a pairwise dissimilarity or
distance measure between objects. We propose a clustering method that can input a multi-point
dissimilarity measure d(i1, i2, ..., iP) where the number of points P can be larger than 2. The work
is motivated by gene network analysis where clusters correspond to modules of highly
interconnected nodes. Here, we define modules as clusters of network nodes with high multi-node
topological overlap. The topological overlap measure is a robust measure of interconnectedness
which is based on shared network neighbors. In previous work, we have shown that the multi-node
topological overlap measure yields biologically meaningful results when used as input of network
neighborhood analysis.

Findings: We adapt network neighborhood analysis for the use of module detection. We propose
the Module Affinity Search Technique (MAST), which is a generalized version of the Cluster Affinity
Search Technique (CAST). MAST can accommodate a multi-node dissimilarity measure. Clusters
grow around user-defined or automatically chosen seeds (e.g. hub nodes). We propose both local
and global cluster growth stopping rules. We use several simulations and a gene co-expression
network application to argue that the MAST approach leads to biologically meaningful results. We
compare MAST with hierarchical clustering and partitioning around medoid clustering.

Conclusion: Our flexible module detection method is implemented in the MTOM software which
can be downloaded from the following webpage: http://www.genetics.ucla.edu/labs/horvath/
MTOM/

Findings
While most clustering procedures use a pairwise dissimi-
larity (distance) measure as input, we present a clustering
procedure that can accommodate a multi-point dissimi-
larity measure d(i1, i2, ..., iP) where P > 1 is the number of
points and the indices ik = 1, ..., n run over the n objects.
Since we are mainly interested in a network application,

we will refer to the objects as nodes and the corresponding
measure as multi-node dissimilarity.

A multi-node (P-point) dissimilarity measure d(i1, i2, ...,
iP) is defined to satisfy the following properties:

i) it takes on non-negative values, i.e.
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ii) it equals 0 when all indices are equal, i.e.,

iii) it is symmetric with respect to index permutations, i.e.

Note that this definition reduces to that of a pairwise dis-
similarity when P = 2.

Several approaches can be used to define a multi-node
dissimilarity measure. For example, a pairwise dissimilar-
ity measure d(i1, i2) gives rise to multi-node dissimilarity
measure by averaging all pairwise dissimilarities, e.g. a 3
node measure can be defined as follows

The proposed module affinity search technique (MAST)
can be used for any pairwise or multi-node dissimilarity
measure. But our particular focus is the multi-node topo-
logical overlap measure (reviewed below) since it was
found useful in network neighborhood analysis [1]. The
topological overlap measure is defined for weighted and
unweighted networks that can be represented by a
(weighted) adjacency matrix A = [a(ij)], i.e. a symmetric
similarity matrix with entries between 0 and 1. In an
unweighted network, a(ij) = 1 if nodes i and j are con-
nected and 0 otherwise. In a weighted network, 0 ≤ a(ij) ≤
1 encodes the pairwise connection strength. Examples of
such networks include gene co-expression networks and
physical interaction networks.

A simple approach for measuring the dissimilarity
between nodes i and j is to define dissA(ij) = 1 - a(ij). How-
ever, this measure is not very robust with respect to erro-
neous adjacencies. Spurious or weak connections in the
adjacency matrix may lead to 'noisy' networks and mod-
ules [2]. Therefore, we and others have explored the use of
dissimilarity measures that are based on common inter-
acting partners or on topological metrics [3-7]. In this arti-
cle, we will define modules as sets of nodes that have high
topological overlap.

Review of the pairwise topological overlap measure
The topological overlap of two nodes reflects their similar-
ity in terms of the commonality of the nodes they connect
to. Two nodes have high topological overlap if they are
connected to roughly the same group of nodes in the net-
work (i.e. they share the same neighborhood). In an

unweighted network, the definition of the pairwise topo-
logical overlap measure in the supplementary material of
[3] can be expressed in set notation as

where N(i1, i2) denotes the set of common neighbors

shared by i1 and i2, N (i1, - i2) denotes the set of the neigh-

bors of i1 excluding i2 and |·| denotes the number of ele-

ments (cardinality) of its argument. The Binomial

coefficient  = 1 in the denominator of Eq. (2) is an

upper bound of a(i1i2). One can show that 0 ≤ a(i1i2) ≤ 1

implies 0 ≤ t(i1i2) ≤ 1 [1,8,9], i.e. t(i1i2) can be considered

a normalized measure of the number of shared direct
neighbors. In the following, we will review how to extend
this pairwise measure to multiple nodes.

Review of the multi-node topological overlap measure
The topological overlap measure presented in Eq. (2) is a
pairwise similarity measure. While pairwise similarities
are widely used in clustering procedures, we have shown
that it can be advantageous to consider multi-node simi-
larity measures [1]. There are several ways to extend this
measure to a multi-node similarity. The first extension
(referred to as average pairwise extension) is to simply
average the pairwise measure across all pairwise index
selections as described in Eq. (1). The second extension
(referred to as stringent MTOM extension) keeps track of
the numbers of neighbors that are truly shared among
multiple nodes. For example, the MTOM involving 3 dif-
ferent nodes i1,i2,i3 is defined as

where N(i1, i2, i3) is the set of the neighbors shared by i1,

i2 and i3 and N (i1, i2, - i3) is the set of the neighbors shared

by i1 and i2 excluding i3. The Binomial coefficient  = 3

in the denominator of Eq. (3) is the upper bound of a(i1i2)

+ a(i1i3) + a(i2i3) and equals the number of connections

that can be formed between i1, i2, and i3. One can easily

d i i iP( , ,..., ) ,1 2 0≥

d i i i( , ,..., ) ,1 1 1 0=

d i i i d i i i d i i iP P P( , ,..., ) ( , ,..., ) ( , ,..., ).1 2 2 1 2 1= = =K

d i i i
d i i d i i d i i

( , , )
( , ) ( , ) ( , )

.1 2 3
1 2 1 3 2 3

3
= + + (1)

t i i

N i i a i i

N i i N i i( )

| ( , )| ( )

min{| ( , )|,| ( , )|}1 2

1 2 1 2

1 2 1 2
2

2
=

+

− − +
⎛

⎝⎝
⎜

⎞

⎠
⎟

≠

=

⎧

⎨
⎪⎪

⎩
⎪
⎪

if 

if 

i i

i i

1 2

1 21 .

(2)

2

2

⎛

⎝
⎜

⎞

⎠
⎟

t i i i
N i i i a i i a i i a i i

N i i

( )
| ( , , )| ( ) ( ) ( )

min{| ( ,
1 2 3

1 2 3 1 2 1 3 2 3

1

= + + +

22 3 1 2 3 1 2 3
3

2
, )|,| ( , , )|,| ( , , )|}− − − +

⎛

⎝
⎜

⎞

⎠
⎟i N i i i N i i i

(3)

3

2

⎛

⎝
⎜

⎞

⎠
⎟

Page 2 of 14
(page number not for citation purposes)



BMC Research Notes 2009, 2:142 http://www.biomedcentral.com/1756-0500/2/142
prove 0 ≤ a(i, j) ≤ 1 implies that 0 ≤ t(i1i2i3) ≤ 1. The strin-

gent MTOM extension is related to the average pairwise
TOM extension (Eq. 1) but it puts particular weight onto
neighbors that are truly shared between the nodes. Below,
we briefly compare of the two multi-node extensions (and
corresponding dissimilarity measures).

MTOM for weighted networks
To extend the MTOM measure to weighted networks, we
express the set notation in terms of the entries of the adja-
cency matrix as follows

Note that these formulas remain mathematically well
defined for a weighted adjacency matrix 0 ≤ a(i1i2) ≤ 1.
Therefore, it is natural to use these algebraic formulas for
defining the MTOM measure for a weighted networks. It is
straightforward to extend the above equations for P = 3
nodes to more than 3 nodes, e.g. our MAST software can
deal with any integer P > 1.

Since the topological overlap measure accounts for con-
nections to shared neighbors, it is particularly useful in
the context of sparse network, e.g. protein-protein interac-
tion networks [3,8,10]. A comparison of the topological
overlap measure to alternative measures (e.g. adjacency
and correlation-based measures) can be found in [1,7].

Comparison of MTOM based dissimilarity measures
The MTOM measures is a similarity measure that has an
upper bound of 1. To turn it into a dissimilarity we sub-
tract it from 1. For example, a two-node dissimilarity is
given by

and a three node dissimilarity measures are given by

As outlined in Eq. (1), an alternative 3-node dissimilarity
can be defined as follows

On real data, we find that the two 3 point dissimilarity
measures (Eq. 5) and (Eq. 6) are highly correlated (r ≈ .9)
across index triplets with distinct indices, i.e. when i1 ≠ i2
≠ i3. But if 2 indices are equal and different from the third
index, (e.g. when i1 = i2 ≠ i3 which entails dissTOM 2(i1, i2)
= 0) then the average pairwise dissimilarity (Eq. 6) takes
on substantially lower values than dissimilarity (Eq. 5).
Across all (possibly non-distinct) index triplets, we find a
weak correlation (r ≈ 0.3) between the two 3 point dissim-
ilarity measures. In the following, we proceed with the
non-pairwise dissimilarity measures (e.g. Eq. 5).

Review of network neighborhood analysis using MTOM
In a previous publication, we have shown that the multi-
node topological overlap measure (MTOM) can perform
better than a pairwise measure in the context of network
neighborhood analysis [1]. Since network neighborhood
analysis is an important step in our proposed MAST pro-
cedure for module detection, we will review it in the fol-
lowing. Neighborhood analysis aims to find a set of nodes
(the neighborhood) that is similar to an initial 'seed' set
of nodes. Intuitively speaking, a neighborhood is com-
posed of nodes that are highly connected to the given seed
set of nodes. Since many of our applications involve net-
works comprised of genes, we will use the words 'node'
and 'gene' interchangeably in this article. Neighborhood
analysis facilitates a guilt-by-association screening strategy
for finding genes that interact with a given set of biologi-
cally interesting genes. Informally, we refer to the result-
ing neighborhood as MTOM neighborhood. The MTOM-
based neighborhood analysis requires as input an initial
seed neighborhood composed of S0 ≥ 1 node(s) and the
requested final size of the neighborhood St = S0 + S, where
S is the number of nodes that will be added to the initial
neighborhood. For each node outside of the initial (seed)
neighborhood, the MTOM software computes the MTOM
value with the initial neighborhood. Next the S nodes
with the highest MTOM values are selected and added to
the initial seed neighborhood.

Computational Speed
In the following, we report computation times for carry-
ing out MTOM neighborhood analysis on a computer
with the following specifications: Intel Pentium 4 CPU
2.40 GHz 2.39 GHz, 1.00 G of RAM. To search for 10
neighbors of a gene, MTOM required 10 seconds in a net-
work comprised of 2000 nodes, 2 minutes in a network of
5000 genes, 12 minutes in a network comprised of 10 k
genes, and over 1 hour in a network comprised of 150 k
genes.
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Finding modules (clusters) in a network
The detection of modules in a network is an important
task in systems biology since genes and their protein prod-
ucts carry out cellular processes in the context of func-
tional modules. Here we focus on module identification
methods that are based on using a node dissimilarity
measure in conjunction with a clustering method. We
define modules as clusters of densely interconnected
nodes. Although our method can be easily be adapted to
any (dis-)similarity measure, our software implementa-
tion uses an extension of the topological overlap measure,
which has been used in many network applications
[1,3,7,8,11,12]. Numerous clustering methods exist for
pairwise dissimilarity measures. We review hierarchical
clustering and partitioning around medoids in more
detail since we compare them to the proposed MAST pro-
cedure.

Review of hierarchical clustering with the pairwise 
topological overlap measure
Before we describe the details of the MAST procedure, we
method we first review a widely used module detection
method which defines modules as branches of a hierarchi-
cal clustering tree. The standard approach for using the
pairwise topological overlap measure for module detec-
tion is to use it as input of a hierarchical clustering proce-
dure which results in a cluster tree (dendrogram) [13].
Next clusters (modules) are defined as branches of the
cluster tree. Toward this end, one can use the R package
dynamicTreeCut which implements several branch cut-
ting methods [14]. Hierarchical clustering procedure has
led to biologically meaningful modules in several applica-
tions [3,8,10,11,15-19], but it has one major limitation: it
can only accommodate a pairwise dissimilarity measure.
In contrast, our MAST procedure can accommodate a
multi-node measure.

Review of partitioning around medoid clustering
Partitioning around medoids (PAM, [13]), also known as
k-medoid clustering, is a widely used clustering method,
which generalizes k-means clustering. Compared to the k-
means approach that is based on a Euclidean distance
measure, PAM accepts any pairwise dissimilarity measure.
The number k of clusters (partitions) is a user defined
parameter. The PAM-algorithm iteratively constructs rep-
resentative objects (medoids) for each of the k clusters.
After finding a set of k initial medoids, corresponding k
clusters are constructed by assigning each observation to
the nearest medoid. After a preliminary clusters assign-
ment, new medoids are determined by minimizing the
within cluster dissimilarity measure. The procedure is iter-
ated until convergence to a (local) minimum.

Similar to hierarchical clustering PAM can only accept a
pairwise dissimilarity measure. Another limitation of

PAM is that it does not allow for un-assigned (un-clus-
tered) nodes. In many gene co-expression network appli-
cations, there are thousands of background genes that
should not be forced into a module [8,14].

Review of CAST
The Cluster Affinity Search Technique (CAST) [20] has
been found to be an attractive clustering procedure for
module detection in gene expression data. CAST is a
sequential procedure that defines clusters one at a time.
Since we have network applications in mind, we will refer
to the clusters as modules. After detecting a module, CAST
removes the corresponding nodes from consideration and
initializes the next module. Module detection proceeds by
adding and removing nodes based on a similarity meas-
ure between the nodes and the module members. A node
is added if its similarity to the module exceeds a user-
defined threshold. At each iteration the 'loosest' node will
be dropped if its similarity to the module falls below the
threshold. Note that the threshold is constant for the
whole clustering procedure, which is why we refer to it as
global threshold.

Module Affinity Search Technique (MAST)
MAST extends the CAST procedure to module detection in
a network. There are two major extensions. First, we pro-
pose to use a multi-node similarity measure instead of a
pair-wise similarity since we have found evidence that a
multi-node topological overlap measure (MTOM) can be
more meaningful in network neighborhood analysis [1].
The second extension (described below) describes a local
stopping rule for module growth that is used along the
global stopping rule.

The starting point of the MAST procedure is an initial set
of seeds for network neighborhood analysis (described
above). These seeds can be user-defined or the procedure
will automatically choose them based on their network
connectivity k(i) = sumj ≠ ia(ij). Since the automatic proce-
dure uses the most highly connected nodes in a network
as seeds, we often refer to the seeds informally as 'hub
nodes'. Around these hub nodes, MAST defines an MTOM
neighborhood of size 20 (referred to as hub neighbor-
hood). We have found that the hub neighborhood size of
20 works well in our simulations and applications but this
parameter value could be changed.

A flowchart of the MAST can be found in Figure 1. The
procedure follows three steps. In step 1, it finds initial
seeds (highly connected hubs) and their corresponding
hub neighborhoods. Using neighborhood analysis, the
hub neighborhoods are further extended to 'tentative
modules'. If the tentative modules pass user specified con-
trol thresholds, they are grown into preliminary modules.
In step 2, the hub neighborhoods are extended (grown) to
Page 4 of 14
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Flowchart of the MAST approachFigure 1
Flowchart of the MAST approach. The Figure outlines the steps of the MAST procedure. In step 1, the MAST procedure 
finds MTOM neighborhoods around initial seed nodes. The software allows the user to specify an initial set of seed nodes or, 
as alternative, we have also implemented an automatic procedure for picking seed nodes. In step 2 the hub neighborhoods are 
extended to preliminary modules. In this step, the initial hub neighborhoods comprised of 20 nodes are grown into larger mod-
ules in a stepwise fashion. The module growth is subject to stopping rules. In step 3, preliminary modules may be merged. Since 
some of the preliminary modules may be very similar, it can be advantageous to merge them into larger modules. The merging 
step is repeated until no pair of modules can be found with a relative between-module similarity larger than the threshold.
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modules in a simultaneous fashion. In step 3, similar
modules are merged. Toward this end, the procedure
assesses the relative similarity between the preliminary
modules.

MAST stopping rules
After a hub neighborhood has been identified, MTOM
neighborhood analysis is used to grow a preliminary
module around it. An important question is when to stop
the module growth. Here we propose two stopping rules.
At each step of the module growth, the closest neighbor to
the module is identified based on the MTOM measure.
The module growth proceeds until the closest neighbor
falls below a global or a local control threshold. Both
stopping rules for module growth consider a measure of
relative similarity between a node and a module. We will
make use of the following notation. Lower case indices
denote individual nodes (e.g node i); upper case indices
denote modules (e.g. module K). We denote the set of
indices of nodes within module K by C(K). The module
size (i.e., the number of nodes in module K) is denoted by
N(K).

In the following, we describe measure for assessing a) the
average similarity of module nodes, b) the similarity
between a node and a module, and c) the similarity
between two modules.

The pairwise similarity between nodes i and j is denoted
as s(i, j). Below, we choose the pairwise topological over-
lap measure for s(i, j).

The within-module similarity s(K) of module K is defined
as the average pairwise similarity between module nodes,
i.e

Below, we will refer to this quantity informally as module
tightness.

The average within-module similarity SW (K, J) for clusters
K and J is the weighted average of the individual within-
module similarities, i.e.,

The similarity s(K, j) between module K and node j is
defined as the average pairwise similarity between node j
and the module nodes, i.e.,

The relative similarity rBetween(K, i) between module K and
node i is defined as follows

The between-module similarity SBetween(K, J) between
modules K and J is defined as the average between module
similarity, i.e.,

The relative similarity RBetween(K, J) between modules K
and J is defined as follows

The first stopping rule, referred to as global control, stops
module growth when the relative similarity between the
module and its closest neighbor falls below a global
threshold. Analogous to its use in CAST, the global stop-
ping rule is used to prevent the addition of nodes that do
not exceed a minimum similarity threshold with regard to
the module. The Global Control assesses whether the rela-
tive similarity rBetween(K, i) between module K and the clos-
est node i is less than a the global threshold.

The second stopping rule, referred to as local control, con-
siders the trend of the relative similarity measure as a
function of the growth history, see Figure 2. Module
growth is stopped if the direction of the trend falls below
a local threshold. The local stopping rule is used to pre-
vent the addition of nodes that would lead to a strong dis-
continuity in the module growth history (as reflected by
the pattern of relative similarities). The local stopping rule
uses the relative similarities of previous nodes to prevent
the addition of outlying nodes that do not fit the trend. To
illustrate the local stopping rule, assume that the relative
similarity of each added node was 1 percent smaller than
that of the previous node. If the relative similarity of the
next node under consideration is say 30 percent smaller
than that of the previous node, it does not fit the trend.
Adding this node would lead to a severe discontinuity in
the module growth history and lower the 'admissions
standard' set by the previous nodes. Since this outlying
node may be part of a different module, it is not added to
the module. Specifically, the Local Control assesses
whether the relative similarity rBetween(K, i) of the closest
node i does not fit the trend of growth history of module
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K. Specifically, denote by {rBetween(K, a1), rBetween(K, a2), ...,
rBetween(K, aN(K))} the set of relative similarities according
to the module growth history, i.e., the relative similarities
are ordered according to when the corresponding mem-
bers were added to the module. The module K grows at
each step. To estimate the trend, a local 'window' of w
most recent nodes is considered. To estimate the trend a
linear regression model is fit to the vector of w most recent
relative similarities {rBetween(K, aN(K)-w+1), rBetween(K, aN(K)-

w+2), ..., rBetween(K, aN(K))}, versus the vector {1, 2, ..., w}.
This (local) univariate linear regression model can be
used to estimate a prediction interval of the relative simi-
larity for the next candidate module member. Based on
the regression model, node j fails the Local Control if rBe-

tween(K, j) is smaller than the lower bound of the predic-
tion interval. In our applications, we use a very wide

prediction interval (default Tlocal = 0.9999) but this pro-
portion is a user-defined threshold. Figure 2 illustrates the
two stopping rules.

Steps of the MAST procedure
In the following, we outline the steps of the MAST proce-
dure in more detail.

Step 1, find hub neighborhoods
The MAST procedure is based on finding MTOM neigh-
borhoods around initial seed nodes. The software allows
the user to specify an initial set of seed nodes or, as alter-
native, we have also implemented an automatic proce-
dure for picking seed nodes. Since each node is part of a
network, one can compute its connectivity (degree) to
other nodes: ki = Σj ≠ i a(ij). We have found that seeds with
high connectivity tend to produce more meaningful
neighborhoods [1]. Therefore, the first seed is chosen as
the most highly connected 'hub' node in the network.

Next we use MTOM neighborhood analysis to arrive at a
tight neighborhood around the hub node. We refer to the
result as hub neighborhood. The default hub neighborhood
size of 20 can be changed by the user. Using the stopping
rules described above, the hub neighborhood is then
grown to a preliminary module. If the size of the prelimi-
nary module is below a user-defined threshold, the initial
hub node is rejected and the next most highly connected
node will be chosen as seed. But if the size of the prelimi-
nary module passes the threshold, then the preliminary
module nodes will not be considered when choosing a
second seed. Thus, the second seed will be the most highly
connected node outside the first preliminary module. This
process of choosing seeds is repeated until all nodes have
been considered.

Step 2, extend the hub neighborhoods to preliminary modules
In this step, the initial hub neighborhoods comprised of
20 nodes are grown into larger modules in a stepwise fash-
ion. We have implemented a competitive module growth
process where the modules compete for the remaining
nodes. At each step, the algorithm finds the closest MTOM
neighbor of each module. If a node is the closest neighbor
for 2 or more modules, it will be assigned to the module
with which it has the highest MTOM value. The module
growth is subject to the stopping rules described above.

Step 3, merge the preliminary modules

Since some of the preliminary modules may be very simi-
lar, it can be advantageous to merge them into larger mod-
ules. The merging procedure computes the maximum
relative between-module similarity

 across all possible pairs of

modules. If the maximum is above a user-defined thresh-

max R K KK K between a ba b≠ ( ),

Global control and local control of module detectionFigure 2
Global control and local control of module detection. 
The black curve shows the observed relative similarity rBe-

tween(K, i) (y-axis) between a module K and the ith closest 
node versus the growth history (x-axis). The red curve 
shows the lower bound of the prediction intervals from a 
local linear regression model. The red horizontal line shows 
the global threshold Tglobal. According to the global control 
stopping rule, module growth stops when the black curve 
falls below Tglobal. According to the local control stopping 
rule, module growth stops when the black curve falls below 
the red curve. a) Example where module growth stops 
because of global control with Tglobal = 0.70. The dashed verti-
cal line shows the final module size. b) Example where mod-
ule growth stops because of a local control prediction 
interval with Tlocal = 0.9999.
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old Tmerge, the corresponding modules will be merged. The

merging step is repeated until no pair of modules can be
found with a relative between-module similarity larger
than the threshold.

Parameter Settings
As outlined above, the MAST procedure allows the user to
specify several parameters. Changing the parameters will
lead to different modules. We find that the resulting mod-
ules are highly dependent on the initial seeds. While we
allow the user to specify initial module seeds, we have
implemented an automatic seed detection method in step
1. Other parameters are the threshold for the global con-
trol Tglobal (step 1 and step 2), the threshold for the local
control Tlocal (step 2), the minimum module size, and the
merging threshold Tmerge. The software uses the following
default settings Tglobal = 0.6, Tlocal = 0.9999, and minimum
module size of 50. In our applications, we illustrate how
the results change as a function of different parameter set-
tings. In general, the higher Tglobal and the lower Tlocal, the
tighter will be the resulting modules.

Application to a gene co-expression network
The MAST procedure can be used to find clusters (mod-
ules) in any undirected network (e.g. protein-protein
interaction networks). But we will focus here on the anal-
ysis of a weighted correlation network (also known as
weighted gene co-expression network) [8,12,21,22]. An
undirected network is fully specified by its adjacency matrix
a(ij), a symmetric n × n matrix with entries in [0, 1]. The
adjacency a(ij) encodes the network connection strength
between nodes i and j. To calculate the adjacency matrix,
an intermediate quantity called the co-expression similarity
s(i, j) is first defined. The default method defines the co-
expression similarity s(i, j) as the absolute value of the cor-
relation coefficient between the profiles of nodes i and j:

but alternative measures (e.g. based on mutual informa-
tion or more robust correlation measures) could also be
used. Using a thresholding procedure, the co-expression
similarity is transformed into the adjacency. An
unweighted network adjacency a(ij) between gene expres-
sion profiles xi and xj can be defined by hard thresholding
the co-expression similarity s(i, j) as

where τ is the hard threshold parameter. While
unweighted networks are widely used, they do not reflect
the continuous nature of the underlying co-expression
information and may thus lead to an information loss. In
contrast, weighted networks allow the adjacency to take

on continuous values between 0 and 1. A weighed net-
work adjacency can be defined by raising the co-expres-
sion similarity to a power [8,21]:

with β ≥ 1. The adjacency in Equation (14) implies that
the weighted adjacency a(ij) between two genes is propor-
tional to their similarity on a logarithmic scale, log(a(ij))
= β × log(s(i, j)).

Comparing modules to known gene ontologies
We applied the MAST procedure to find modules in a sub-
set of a brain cancer gene co-expression network [8,12].
The gene co-expression network was constructed on the
basis of 55 brain cancer microarrays. A weighted adja-
cency matrix was defined as follows a(ij) = |cor(xi, xj)|4

where xi and xj are the expression profiles of gene i and j,
respectively. Our findings remain largely unchanged with
regard to different choices of the power β = 4. To be able
to relate modules to known gene ontologies, we restricted
the analysis to the 520 genes with the following ontolo-
gies: apoptosis (205 genes), neurogenesis (229 genes) and
DNA replication (86 genes). To assess the performance of
different module detection methods, we compared mod-
ule membership to the 3 known gene ontologies. We used
the Rand index to measure agreement between the result-
ing modules and the gene ontologies. The Rand index is a
widely used measure to evaluate the agreement between
two partitions [23].

We considered 3 different module detection methods: i)
our MAST approach, ii) average linkage hierarchical clus-
tering, and iii) Partitioning Around Medoids. All three
procedures depend on input parameters. For example, the
modules based on hierarchical clustering depend on the
height cut-off used for cutting off branches. Partitioning
around medoids uses the number of modules k as input
parameter. For PAM, the Rand index ranges from 0.483 to
0.594. For hierarchical clustering, the maximum Rand
index equals 0.598, see 3. For the MAST procedure, the
maximum observed Rand index equals 0.64. Overall, we
find that MAST performs best on these data. This can be
seen from Figure 3 where we compare MAST with hierar-
chical clustering. To allow for a fair comparison between
these two procedures, we report the Rand index as a func-
tion of the proportion of unassigned genes.

Simulation studies
Simulation I
Here we present a simple simulation study for highlight-
ing the differences between MAST, PAM, and average link-
age hierarchical clustering. We do not claim that the
simulated example represents a good approximation to
real gene expression data. A more complex model is
described below.

s i j cor x xi j( , ) | ( , ) |=

a ij
s i j

( )
( , ) ;

.
=

≥⎧
⎨
⎩

1

0

if 

otherwise

t
(13)

a ij s i j( ) ( , ) ,= b (14)
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Cancer gene network: comparing MAST to hierarchical clusteringFigure 3
Cancer gene network: comparing MAST to hierarchical clustering. Both procedures allow for unassigned (unclus-
tered) genes. (a) Rand index (y-axis) with gene ontology as a function of the percentage of assigned genes (x-axis). Since the 
blue line (MAST procedure) tends to be higher than the red line (hierarchical clustering), MAST performs better in this applica-
tion. (b) Hierarchical clustering dendrogram with the pairwise TOM. The first color band underneath the tree shows the 
results of defining modules as branches of the tree. 'Grey' is reserved for unassigned genes. The second color band depicts the 
module assignment of the MAST procedure. The third colorband depicts the known gene ontologies. (c) The barplots on the 
left hand side and on the right hand side show the functional enrichment of modules (x-axis) found by the MAST procedure 
and by hierarchical clustering, respectively. The height of the barplots equals the proportion of module genes that are known 
to be apoptosis related (yellow bars), neurogenesis related (blue bars), and DNA replication related (red bars). Both clustering 
procedures find 3 similar modules.
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For this simple example, we simulated 500 variables (fea-
tures) that form 4 modules corresponding to sets of highly
correlated variables. Specifically, we simulate 500 varia-
bles with values in 60 observations. The resulting data can
be represented by a matrix {xij} with 500 rows (1 ≤ i ≤
500) and 60 columns (1 ≤ j ≤ 60). The variables were sim-
ulated to form 4 modules with sizes n1 = 100, n2 = 100, n3
= 150 and n4 = 150, respectively. For the kth module, we
simulated a module seed vector mk and simulated module
members (variables) around it. The jth value of the ith var-
iable in the kth module was simulated as follows

where the stochastic noise  was simulated to follow a

normal distribution with mean 0 and variance 0.25. We
simulated the first three seeds to be highly correlated with
the fourth seed. Thus, the fourth resulting module is
mixed with the first three modules. Specifically, the simu-

lated true seed variables  are given by

where the indicator function I(condition) equals 1 if the
condition is true and 0 otherwise.

To arrive at a weighted network (adjacency matrix), we
first correlated the 500 variables xi with each other across
the observations. This resulted in a 500 × 500 dimen-
sional correlation matrix. To emphasize high correlations
at the expense of low, correlations, we raised the entries of
the correlation matrix to a power β = 2, i.e., a(ij) = |cor(xi,
xj)|2 where xi and xj are the variable vector across the 60
observations. We study whether the MAST procedure cor-
rectly retrieves the known underlying module member-
ship in the simulated 4 modules. In Figure 4, we color the
nodes of the first three modules by red, blue, and green
respectively. The fourth module, which is highly corre-
lated with the other modules, is colored in yellow. Figure
4 shows the MAST procedure retrieves the true modules
correctly. It outperforms hierarchical clustering method
and PAM when both use the pairwise TOM as input.

Simulation Study II
Here we provide a more complex simulation study. Simi-
lar to simulation study I, we specify seed genes that lie at
the center of the module. We simulated 5 modules. The

seeds of the first two modules m(1) and m(2) correspond to
vectors whose entries were randomly chosen to be 0 or 1.
We added noise from a standard normal distribution N(0,
1). The seed of modules 3 was given by m(3) = a × m(1) + 3
where the coefficient a controls the dependence between
the seeds and  represents standard normal noise.

Analogously, we chose the seeds of modules 4 and 5 to
depend on seed 2, i.e., m4 = a × m(2)+ 4, m(5) = a × m(2) + 5.
We simulated gene expression profiles around each of
seeds with different correlations with the seed. The simu-
lated gene expressions were chosen such that their corre-
lation with the seed ranged from rmin = 0.80 to 1. By
increasing the parameter a one increases the dependency
between the module seeds. We considered 4 scenarios cor-
responding to a = 0.7, a = 1.0, a = 1.2 and a = 1.5, respec-
tively. For each of the 4 scenarios, we compared
hierarchical clustering to the MAST procedure. As
described above, both procedures depend on several
input parameters. To allow for a fair comparison between
hierarchical clustering and the MAST procedure, we report
the Rand index as a function of the proportion of unas-
signed genes in Figure 5. Note that the red line corre-
sponding to hierarchical clustering varies greatly while the
blue line corresponding to the MAST procedure varies
less. Thus, the the performance of the MAST procedure is
more robust to parameter specification than that of hier-
archical clustering. Figures 5b)-d) show that the MAST
procedure outperforms hierarchical clustering as the
dependence (similarity) between the modules increases.
When there is a low dependence between the modules (a
= 0.7, Figures 5a), we find that hierarchical clustering per-
forms better than MAST when one tolerates a large
number of un-assigned genes. But if the parameters of
both procedures are chosen such that few genes are unas-
signed then the MAST procedure performs better.

Here we simulated data with a handful of modules. To
simulate more realistic gene expression data involving an
arbitrary number of modules, future studies could make
use of the R function simulateDatExpr in the WGCNA R
package [21].

Conclusion
It is difficult to argue that one clustering procedure is bet-
ter than another due to the lack of universally accepted
benchmark data and a gold standard. We present simula-
tion studies that illustrate that the proposed MAST proce-
dure can be superior to hierarchical clustering and
partitioning around medoids when dealing with simu-
lated cluster data whose modules are generated around
'seed' nodes. In this situation, seed-based clustering
method such as MAST are expected to perform well.
Future comparisons should evaluate MAST on simulated
cluster data that are not seed-centered.
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Comparison of different module detection methods for simulation I with mixed modulesFigure 4
Comparison of different module detection methods for simulation I with mixed modules. The clustering tree 
results from average linkage hierarchical clustering with the pairwise topological overlap measure. The first color band under-
neath the tree colors the branches (modules) that result after cutting off the branches with a fixed height cut-off. When com-
pared to the last color band that corresponds to the true simulated modules, it becomes clear that the method fails at 
retrieving the fourth (yellow) module irrespective of the height cut-off. The second color band corresponds to the module 
colors retrieved from PAM clustering with k = 4. It fails to retrieve true membership as one can see by comparing it to the true 
colors in the last row. Color bands 3 through 5 correspond to the steps of the MAST procedure. The fifth row shows the final 
result of the MAST procedure. When compared to the last color band that corresponds to the true simulated modules, it 
becomes clear that the MAST procedure retrieves the true underlying module structure. In particular, it can retrieve the yel-
low module as well.
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Comparison of different module detection methods for simulation IIFigure 5
Comparison of different module detection methods for simulation II. Figures a) through d) correspond to modules 
of increasing dependency. The clustering trees correspond to average linkage hierarchical clustering with the pairwise topolog-
ical overlap measure. The first color band underneath each clustering tree color-codes true simulated module membership. 
The plot under the color band shows the performance of the MAST procedure (blue line) as a function of different MAST 
parameters. The y-axis reports the Rand index versus the percentage of genes that were assigned to a module (x-axis). The red 
curve in the plot corresponds to the Rand index of the hierarchical clustering procedure that defines modules as branches. 
Note that when there is a strong dependence between the modules (Figure d), the MAST procedure outperforms hierarchical 
clustering.
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Numerous clustering procedures have been proposed for
the analysis of gene expression data [24-26]. Bi-clustering
procedures cluster genes and samples simultaneously
[27,28]. Here we propose a clustering method that can be
used for a multi-node dissimilarity measure. The pro-
posed MAST procedure is well suited for the use of any
multi-node dissimilarity measure. In our application and
software, we use the multi-node topological overlap
measure and the intuition of network neighborhood anal-
ysis described in [1] but it is straightforward to adapt the
MAST procedure to any other multi-node measure. For
example, by averaging a pairwise dissimilarity measure,
one can easily define a multi-node measure as described
above. Therefore, the MAST procedure can also be used for
any pairwise dissimilarity measure.

Using a gene co-expression network application and sev-
eral simulated examples we provide evidence that the
MAST procedure can outperform hierarchical clustering
and PAM. But a more comprehensive comparison with
alternative methods is desirable. Several procedures for
finding modules in networks have been proposed, e.g.
Cytoscape implements several procedures [29]. MAST can
be used to find modules in gene expression data or other
quantitative data after a correlation network is defined
between the quantitative variables. When applied to a net-
work (specified an adjacency matrix), the MAST proce-
dure yields clusters of tightly interconnected modules.
Since module sizes and module tightness can vary greatly
in practice we have found it useful to implement an adap-
tive local stopping rule that considers the module growth
history.

Our preliminary data (simulations and a co-expression
network analysis) are encouraging but more comprehen-
sive comparisons are needed. Our software implementa-
tion should facilitate an evaluation and comparison with
other methods.
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