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Abstract
Background: SH-SY5Y cells exhibit a neuronal phenotype when treated with all-trans retinoic
acid (RA), but the molecular mechanism of activation in the signalling pathway mediated by
phosphatidylinositol 3-kinase (PI3K) is unclear. To investigate this mechanism, we compared the
gene expression profiles in SK-N-SH cells and two subtypes of SH-SY5Y cells (SH-SY5Y-A and SH-
SY5Y-E), each of which show a different phenotype during RA-mediated differentiation.

Findings: SH-SY5Y-A cells differentiated in the presence of RA, whereas RA-treated SH-SY5Y-E
cells required additional treatment with brain-derived neurotrophic factor (BDNF) for full
differentiation. After exposing cells to a PI3K inhibitor, LY294002, we identified 386 genes and
categorised these genes into two clusters dependent on the PI3K signalling pathway during RA-
mediated differentiation in SH-SY5Y-A cells. Transcriptional regulation of the gene cluster,
including 158 neural genes, was greatly reduced in SK-N-SH cells and partially impaired in SH-SY5Y-
E cells, which is consistent with a defect in the neuronal phenotype of these cells. Additional
stimulation with BDNF induced a set of neural genes that were down-regulated in RA-treated SH-
SY5Y-E cells but were abundant in differentiated SH-SY5Y-A cells.

Conclusion: We identified gene clusters controlled by PI3K- and TRKB-mediated signalling
pathways during the differentiation of two subtypes of SH-SY5Y cells. The TRKB-mediated bypass
pathway compensates for impaired neural function generated by defects in several signalling
pathways, including PI3K in SH-SY5Y-E cells. Our expression profiling data will be useful for further
elucidation of the signal transduction-transcriptional network involving PI3K or TRKB.
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Background
SH-SY5Y cells are the third successive subclone of the SK-
N-SH human neuroblastoma cell line [1]. These cells
arrest in the G1 phase and exhibit a distinct neuronal phe-
notype when treated with RA [2]. Morphological changes
and expression of biochemical and functional neural
markers in SH-SY5Y cells treated with RA resemble those
of neurons. SH-SY5Y cells are thus used as a model system
for studying the molecular mechanisms involved in neu-
ronal differentiation [3-5].

In SH-SY5Y cells, the PI3K/AKT signalling pathway acti-
vated by RA is important for the regulation of neuronal
survival and differentiation [6]. In addition, RA promotes
the activation of PI3K, leading to the activation of a Rho
GTPase, RAC1, that is implicated in the activation of
MAPKs, expression of neural markers and neurite out-
growth in SH-SY5Y cells [7]. RA treatment of SH-SY5Y
cells also induces expression of TRKB (NTRK2), but not of
TRKA (NTRK1), and mediates biological responsiveness
to receptors for the neurotrophins BDNF and NT-4/5 [8].
Additional treatment of SH-SY5Y cells with BDNF stimu-
lates tyrosine phosphorylation of TRKB [9], followed by
activation of the PI3K/AKT and Ras/MAPK pathways, and
the promotion of cell survival and neurite outgrowth in
serum-free medium [8,10].

Although the activation mechanisms of signalling path-
ways stimulated by RA and the neurotrophin have been
extensively studied, the link between these pathways and
the downstream transcriptional network controlling the
expression of target genes required for differentiation of
SH-SY5Y cells remains unclear. To examine these mecha-
nisms, we compared the gene expression profiles in SK-N-
SH cells and two subtypes of SH-SY5Y cells (SH-SY5Y-A
and SH-SY5Y-E), each of which display a different mor-
phology during RA-mediated differentiation.

Methods
Cell culture
A protocol including 15% FBS in the culture condition
has been previously described [10] as a method for
sequential treatment of SH-SY5Y cells with RA and BDNF,
although the present study used a D-MEM/F12 1:1 mix-
ture medium, as recommended in the product informa-
tion sheets. Briefly, random cultured cells from two clone
subtypes of SH-SY5Y and SK-N-SH were seeded on lam-
inin-coated culture dishes (BD Bioscience) for 1 day, and
were then transferred to medium containing 10 μM RA in
the presence or absence of LY294002 (10 μM) for 5 days.
For BDNF-induced sequential differentiation of SH-SY5Y-
E cells, cells were washed with D-MEM/F12 twice after 5

days and were then incubated with 50 ng/ml BDNF in D-
MEM/F12 without serum for 3 days.

Total RNA preparation
For microarray experiments, total cellular RNA was
extracted from cells at specific intervals using a RiboPure
Kit (Ambion) in accordance with the manufacturer's
instructions. The quality of total RNA was assessed using
an Agilent 2100 Bioanalyzer (Agilent Technologies). RNA
samples were prepared at least twice for each cell line and
each time point, were then stored at -80°C.

Oligonucleotide microarray (GeneChip) analysis
Microarray analysis was conducted according to the man-
ufacturer's instructions (Affymetrix) and was performed at
least twice in order to confirm the reproducibility of gene
expression profiles.

Computational analysis of microarray data
Mean signal intensity for all probes was initially tuned to
500 as global scaling and individual signal intensities
were evaluated by a detection call (present/marginal/
absent) using Affymetrix MicroArray Suite 5.0 software
(Affymetrix). Absent or marginal detection was judged
based on a detected transcript being unreliable or suspi-
cious. Signal intensities for all defective probes meeting
this criterion were thus tuned to 100, the average signal
intensity of these probes. As most probe sequences were
designed for the 3' regions of genes [11], each signal inten-
sity was normalised using a normalisation factor of
30,000, the signal intensity of the probe (AFFX-HUM-
GAPDH/M33197_3_at) derived from the 3' region of
GAPDH. All probes on the U133 Plus 2.0 Array were
mapped on the human genome (NCBI Build 36.1) with
BLAT [12], and probes with sequences that matched Ref-
Seq mapping data [13] were selected. We utilised 29,473
reliable target probes that mapped to their target genes
using the Affymetrix formula annotation. Microarray data
related to this study are available from the GEO database
(accession number: GSE9169) [14].

Results and discussion
Phenotypic differences between two subtypes of SH-SY5Y
We observed clear differences in the RA-induced neuronal
phenotype of the two SH-SY5Y subclones, SH-SY5Y-A and
SH-SY5Y-E, which were obtained from two different
bioresource centres (ATCC and ECACC, respectively).
After 5 days of RA treatment, ECACC (SH-SY5Y-E) cells
were slightly larger in size (Fig. 1A) and contained a signif-
icant amount of neuroblastic (N-type) cells and a small
fraction of epithelial (S-type) cells (Fig. 1B). The appear-
ance of S-type cells was suppressed by RA-mediated differ-
entiation on laminin, which promotes neurite outgrowth
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of SH-SY5Y cells [15]. Full differentiation of RA-treated
cells required sequential treatment with BDNF (Fig. 1C),
thus supporting previous findings [10]. Conversely, ATCC
(SH-SY5Y-A) cells easily differentiated into a neuronal
phenotype with extended neurites and formed a neural
network after 5 days of RA treatment (Fig. 1E), again sup-
porting previous observations [16]. The neuronal pheno-
type of SH-SY5Y-A cells was further enhanced by
sequential treatment with RA and BDNF in serum-free
medium for 3 days (Fig. 1F). The original SK-N-SH human
neuroblastoma cell line comprises two different cell types:
a large fraction of epithelial Schwann cells (S-type cells);
and a small number of neuroblast cells (N-type cells) [17].
No neural network is formed by the larger fraction of SK-

N-SH cells (> 80%) in the presence of RA (Fig. 1H).
Instead, these cells elongate and gradually undergo cell
death with sequential BDNF treatment under serum-free
conditions (Fig. 1I).

Identification of expressed genes by using microarray 
analysis
In order to identify the genes required for progression of
neuronal differentiation in RA-treated neuroblastoma
cells, we first performed a microarray analysis of global
gene expression profiles for the two subtype clones of SH-
SY5Y and SK-N-SH cells treated with RA for 5 days. We
also included a perturbation experiment using a potent
PI3K inhibitor, LY294002, to impair RA-induced differen-

Morphological changes in two subtypes of SH-SY5Y and SK-N-SH under differentiation conditionsFigure 1
Morphological changes in two subtypes of SH-SY5Y and SK-N-SH under differentiation conditions. The panels 
show SH-SY5Y-E cells (A-C), SH-SY5Y-A cells (D-F) and SK-N-SH cells (G-I). The cells are nondifferentiated (A, D and G), 
treated for 5 days with 10 μM RA (B, E and H), and sequentially treated with BDNF in the absence of serum for 5 days in SH-
SY5Y-E cells (C) or for 3 days in SH-SY5Y-A (F) and SK-N-SH (I) cells. Arrows indicate S-type cells. Phase contrast microscopy 
×100. Scale bar represents 200 μm. Note that RA-treated SK-N-SH cells gradually die in the absence of serum (I).
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tiation of SH-SY5Y cells (data not shown) [6,7]. For full
differentiation of RA-treated SH-SY5Y-E cells, gene expres-
sion profiles were also analysed following sequential
BDNF treatment of cells for an additional 3 days [10].

We selected 3690 genes (5119 probes) for comparative
analysis of gene expression profiles. These genes were
extracted by combining 3100 genes (3628 probes)
derived from a sum of the top 1000 probes exhibiting sig-
nificant expression patterns by ANOVA [18,19] under the
5 culture conditions described above, with 1059 genes
(1950 probes) identified as being more significant (Fig.
2).

Classification of genes regulated by the PI3K signalling 
pathway
We first compared the differential gene expression profiles
of SH-SY5Y-A cells and SK-N-SH cells, because there is a
clear phenotypic difference between these cell lines under
RA-treated conditions (Fig. 1). Two-factor ANOVA has
previously been used for the statistical analysis of normal-
ised data in order to determine differences in gene expres-
sion between cell lines and time points [20]. As
summarised in Figure 2, we identified a gene cluster con-
taining 2517 genes with significantly different expression
profiles (p < 0.001) between SH-SY5Y-A cells and SK-N-
SH cells treated with RA for 5 days. We also identified 513
genes with expression levels that were significantly down-
or up-regulated when PI3K was inhibited in RA-treated
SH-SY5Y-A cells. Interestingly, 448 of these genes (87.3%)
were common in the product sets of gene clusters selected
on the basis of differences in expression pattern between
SH-SY5Y-A and SK-N-SH. Moreover, expression behav-
iours of the selected genes were almost identical to those
in RA-treated SK-N-SH cells. By removing genes with con-
tradictory profiles or low expression levels, we finally
identified gene clusters A and B, comprising 386 genes,
and a third "other" cluster with 33 genes regulated by the
PI3K signalling pathway in RA-treated SH-SY5Y-A cells.

Figures 3 and 4 show a heat map of expression profiles for
all genes in the clusters. We calculated relative signal val-
ues (0.000–1.000) of gene expression levels in each clus-
ter under all culture conditions, as summarised in
Additional File 1. Cluster A comprises 316 genes with
down-regulated expression in RA-treated SH-SY5Y-A cells
cultured with LY294002 or extremely low-level expression
in RA-treated SK-N-SH cells. Cluster B includes 71 genes
with up-regulated expression in RA-treated SH-SY5Y-A
cells cultured with PI3K inhibitor or high-level expression
in SK-N-SH cells (Figs. 2, 3 and 4 ). Half of the genes in
cluster A showed average signal values < 0.1 in RA-treated
SK-N-SH cells, too low for quantitative comparison
(Additional File 1). To address the effect of a PI3K inhibi-
tor on gene expression in the two clusters, we compared

Classification of genes regulated by the PI3K signalling path-wayFigure 2
Classification of genes regulated by the PI3K signal-
ling pathway. A flow chart summary of how the genes 
(probes) were categorised into two clusters by statistical 
analysis of the microarray data. Cluster A includes genes 
down-regulated by LY294002 in RA-treated SH-SY5Y-A cells 
and those maintained at a low level in RA-treated SK-N-SH 
cells. Conversely, cluster B contains genes up-regulated by 
LY294002 in SH-SY5Y-A cells and maintained at a high level 
in SK-N-SH cells.

386 genes

Cluster A

Down-regulated by
(Low level expression in

Cluster B

Up-regulated by

(High level expression in

**

SH-SY5Y-A + RA

and
SH-SY5Y-A + RA

+LY294002

2,517 genes

(3,268 probes)
513 genes

(603 probes)

3,690 genes (5,119 probes)

SH-SY5Y-A + RA

and
SK-N-SH + RA

448 genes

Removed 33 genes*

(Cluster

Removed 29 genes

intensity

419 genes

Filtered by the difference
in expression profiles

between

(Common to both product sets)

* Showing discrepancies in their profiles

Including 2

Other)

TRKB variants

400)

LY294002 : 71 genes

LY294002 : 316 genes**
SK-N-SH)

SK-N-SH)

(maximum <
Page 4 of 11
(page number not for citation purposes)



BMC Research Notes 2008, 1:95 http://www.biomedcentral.com/1756-0500/1/95

Page 5 of 11
(page number not for citation purposes)

Gene expression profiles during RA-mediated differentiationFigure 3
Gene expression profiles during RA-mediated differentiation. Gene expression levels were examined at six time 
points (0 h, 6 h, 1 day, 2 days, 3 days and 5 days) after addition of RA to each neuroblastoma culture. Heat map representation 
of genes differentially expressed in the indicated cell lines stimulated with RA is shown in the presence or absence of a PI3K 
inhibitor. Genes are clustered according to hierarchical clustering with Pearson’s correlation. A colour-coded scale (green, 
down-regulation; red, up-regulation) for percentage expression is indicated at the top of the figure. Cluster A includes genes 
that were down-regulated by LY294002 in RA-treated SH-SY5Y-A cells. Genes in the cluster were further classified into two 
subgroups: neural genes; and genes related to other functions. Genes selected in Figure 6 are marked in blue on the right side 
of the heat map of cluster A.
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the average signal values of gene expression levels greater
than 0.179, the average signal value in the clusters,
between RA-treated SK-N-SH cells in the presence and
absence of LY294002. In cluster A, the average signal val-
ues of 32 of 77 (42%) gene expression levels did not dip
below 75% of the average values when RA-treated SK-N-
SH cells were exposed to LY294002. Similarly, the average
signal values in 35 of 65 (54%) gene expression levels in
cluster B did not exceed 125% of the average values by the
addition of a PI3K inhibitor (Additional file 1). These
findings are consistent with a substantial defect in tran-
scriptional regulation mediated by the PI3K signalling
pathway in RA-treated SK-N-SH cells.

We further categorised genes into two subgroups of neural
functions and other functions (Figs. 3 and 4), on the basis
of Gene Ontology (GO) annotation [21,22] and a com-
prehensive search of the literature [22-24]. Genes with
neural functions were defined when significant GO
term(s) and/or literal description(s) implicating involve-
ment in neural events were obtained by the gene annota-
tion. We also defined genes with other functions when
neither the GO term nor the literal description was related
to neural events. GO annotation in two clusters yielded
the identification of 114 genes with GO terms related to
neural events (Additional File 2). Cluster A genes included
158 genes in the neural function subgroup and 158 genes
in the other functions subgroup. Cluster B genes were sim-
ilarly classified, with 11 genes in the neural function sub-
group and 60 genes in the other functions subgroup (Fig.
3 and 4).  Neural functions were further divided into 9
functions, as summarised in Additional File 2.

Differences in PI3K-mediated transcriptional regulation 
between two subtypes of SH-SY5Y
To investigate whether the PI3K signalling pathway is suf-
ficiently activated in RA-treated SH-SY5Y-E cells, we fur-
ther focused on the transcriptional regulation of the 386
genes included in these clusters. Differences in expression
profiles of RA-treated SH-SY5Y-E cells with and without
LY294002 were compared to differences in expression
profiles of RA-treated SH-SY5Y-A cells with and without
LY294002 (Fig. 3 and 4). Neurite outgrowth induced in
RA-treated SH-SY5Y-E cells was also inhibited by
LY294002, thus suggesting that the PI3K signalling path-
way is functional in SH-SY5Y-E cells. However, most of
the gene expression in the clusters was regulated in a PI3K-
independent manner, and half of the neural genes were
expressed at extremely low levels (Figs. 3, 4 and 5A),
whereas transcriptional inhibition by LY294002 exclu-
sively emerges after 2–3 days in the presence of RA (Fig.
5A, 5B; bottom panels). These results suggest that the
PI3K signalling pathway is partially disrupted in RA-
treated SH-SY5Y-E cells, with this disruption leading to
reduced differentiation. These results also suggest that

supplementation with an additional TRKB signalling
pathway is required for full differentiation of SH-SY5Y-E
cells after down-regulation of the gene cluster required for
neural events.

Human TRKB is alternatively spliced into at least 3 vari-
ants: TRKB-FL; TRKB-T1; and TRKB-T-Shc [25]. TRKB-FL is
a tyrosine kinase-containing variant, whereas the intracel-
lular tyrosine kinase domain is truncated in the other pro-
teins [26,27]. Two typical gene expression profiles were
observed by microarray analysis in accordance with differ-
ent transcriptional regulation on the alternative promot-
ers (Fig. 5B; bottom panels) [28]. In SH-SY5Y-A cells,
TRKB-FL and TRKB-T-Shc variants showed continuously
induced transcription over 5 days, whereas gene expres-
sion of TRKB-T1 was initially induced but plateaued 1 day
after RA treatment. In SH-SY5Y-E cells, expression of all
TRKB variants, particularly TRKB-T1, was abruptly
induced 3 days after RA treatment and peaked after 5 days
in the presence of RA (Fig. 5B; bottom panels), thus sup-
porting previous results [29]. These TRKB variants were
also transcriptionally regulated by the PI3K signalling
pathway (Fig. 5B; bottom panels), indicating clear cross-
talk between the TRKB and PI3K signalling pathways.
Conversely, induction of TRKB variants was not observed
in SK-N-SH cells at any time, providing a possible expla-
nation for the defect in the neuronal phenotype of these
cells (Fig. 5B, bottom panels).

Transcriptional compensation by an additional TRKB-
mediated signalling pathway in SH-SY5Y-E
Additional BDNF treatment of SH-SY5Y cells stimulates
tyrosine phosphorylation of TRKB [9], promoting neurite
outgrowth in serum-free medium [8,10]. Supporting
these findings, additional exposure of RA-treated SH-
SY5Y-E cells to BDNF resulted in full differentiation and
induced 89 genes that were down-regulated or main-
tained at low expression levels with RA treatment only
(Figs. 5B, 6). These genes were further sorted into two
gene pools: 54 genes from cluster A (shown in blue in Fig.
3; Fig. 6, left panel) and 35 genes regulated in a PI3K-inde-
pendent manner (Fig. 6, right panel). As expected, both of
these pools contain many genes required for neural events
(Fig. 6; Additional File 2), indicating that these genes are
critical for TRKB-mediated differentiation of SH-SY5Y-E
cells. These results also demonstrate that genes down-reg-
ulated either by an impaired PI3K signalling pathway or
by another abrogated signalling pathway are transcrip-
tionally compensated for via an additional TRKB-medi-
ated signalling pathway, leading to full differentiation
(Additional File 3). However, a significant number of
genes down-regulated or maintained at low expression
levels in RA-treated SH-SY5Y-E cells did not exceed the
threshold (Fig. 6 legend) following additional BDNF
treatment (Fig. 3; Additional File 1), thus suggesting that
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the TRKB-dependent signalling pathway only partially
compensates for an impaired PI3K signalling pathway.
The TRKB variants TRKB-FL and TRKB-T-Shc were induced
and plateaued following sequential treatment of SH-
SY5Y-E cells with RA and BDNF. Conversely, TRKB-T1
expression, which was strongly induced by RA treatment
of SH-SY5Y-E cells, was abruptly down-regulated after a
shift to serum-free medium with BDNF (Fig. 5B, bottom
panels), which supports the notion that the dominant-
negative function of tyrosine kinase-deficient receptors
[30] is totally diminished by induction of functional

TRKB-FL. Further studies may be required to identify the
components and transcription factors involved in the
TRKB and PI3K signalling pathways.

In conclusion, we identified gene clusters that are tran-
scriptionally controlled by two different signalling path-
ways mediated by PI3K and TRKB during the
differentiation of two subtypes of SH-SY5Y cells. These
expression profiling data may prove useful in further elu-
cidating the molecular mechanisms regulating the pro-
moter activities of genes required for neuronal

Gene expression profiles during RA-mediated differentiation (continued).Figure 4
Gene expression profiles during RA-mediated differentiation (continued). Cluster B includes genes that were up-
regulated by LY294002 in SH-SY5Y-A cells. Cluster “Other” includes 33 genes with contradictory expression profiles between 
RA-treated SH-SY5Y-A cells with LY294002 and RA-treated SK-N-SH cells. Genes in each cluster were further classified into 
two subgroups: neural genes; and genes related to other functions.
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differentiation. These promoter activities are mediated by
an upstream signal transduction-transcriptional network
including PI3K and/or TRKB.
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Typical gene expression profiles of genes identified in this study.Figure 5
Typical gene expression profiles of genes identified in this study.A) Typical gene expression profiles in RA-treated SH-
SY5Y-E cells. ABAT, which is partially regulated by the PI3K signalling pathway, and PCDHA9, BCL2 and KIF5C, which are 
independently regulated by the PI3K signalling pathway, are included in cluster A. B) Typical expression profiles of genes such 
as MAP2 (left upper panel), NFASC (right upper panel) and TRKB variants (bottom panels), which were categorised as depend-
ent on the PI3K signalling pathway in RA-treated SH-SY5Y-A cells. 
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Expression profiles of genes induced by sequential treatment with BDNF in SH-SY5Y-E cells.Figure 6
Expression profiles of genes induced by sequential treatment with BDNF in SH-SY5Y-E cells. Heat map represen-
tation is shown for genes that are down-regulated or maintained at a low level in the presence of RA but are induced by addi-
tional treatment with BDNF in SH-SY5Y-E cells. RNA sampling was performed at five time points (0 h, 6 h, 1 day, 2 days and 3 
days) after cells were transferred to serum-free medium containing BDNF. To identify the gene expression induced by BDNF, 
we focused on genes with expression levels that were higher in SH-SY5Y-A cells during differentiation, rather than those in 
SH-SY5Y-E or SK-N-SH cells. We also selected genes with expression levels in SH-SY5Y-A cells treated with RA for 5 days 
that exceeded 66.7% of that on day 0, while excluding genes with expression levels that exceeded the 66.7% threshold in SH-
SY5Y-E cells treated with RA for 5 days. We selected genes with expression levels that underwent a >1.5-fold change and 
exceeded the 66.7% threshold when SH-SY5Y-E cells were treated sequentially with BDNF for 3 days. Finally, genes exhibiting 
similar up-regulation by BDNF in SH-SY5Y-E cells and SK-N-SH cells were also excluded. Genes regulated by the PI3K signal-
ling pathway in RA-treated SH-SY5Y-A cells (left panel) and genes not regulated by the PI3K signalling pathway in SH-SY5Y-A 
cells (right panel) are shown. The relative alteration of gene expression in these gene pools is summarised in Additional file 1. 
Genes involved in neural processes are shown in red, and those expressed strongly in brain are shown in purple. Genes encod-
ing transcription factors are underlined.   
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