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Abstract
Background: Though prediction of protein secondary structures has been an active research
issue in bioinformatics for quite a few years and many approaches have been proposed, a new
challenge emerges as the sizes of contemporary protein structure databases continue to grow
rapidly. The new challenge concerns how we can effectively exploit all the information implicitly
deposited in the protein structure databases and deliver ever-improving prediction accuracy as the
databases expand rapidly.

Findings: The new challenge is addressed in this article by proposing a predictor designed with a
novel kernel density estimation algorithm. One main distinctive feature of the kernel density
estimation based approach is that the average execution time taken by the training process is in the
order of O(nlogn), where n is the number of instances in the training dataset. In the experiments
reported in this article, the proposed predictor delivered an average Q3 (three-state prediction
accuracy) score of 80.3% and an average SOV (segment overlap) score of 76.9% for a set of 27
benchmark protein chains extracted from the EVA server that are longer than 100 residues.

Conclusion: The experimental results reported in this article reveal that we can continue to
achieve higher prediction accuracy of protein secondary structures by effectively exploiting the
structural information deposited in fast-growing protein structure databases. In this respect, the
kernel density estimation based approach enjoys a distinctive advantage with its low time
complexity for carrying out the training process.
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Findings
Motivation
In structural biology, protein secondary structures act as
the building blocks for the protein tertiary structures [1,2].
Therefore, analysis of protein secondary structures is an
essential intermediate step toward obtaining a compre-
hensive picture of the tertiary structure of a protein. In this
respect, one of the main challenges is how to accurately
identify the polypeptide segments that could fold to form
a secondary structure. This problem is normally referred
to as prediction of protein secondary structures [1,3].

Though prediction of protein secondary structures has
been an active issue in bioinformatics research for quite a
few years and many approaches have been proposed [1,4-
10], a new challenge emerges as the sizes of contemporary
protein structure databases continue to grow rapidly. The
new challenge, which has been addressed in several
recently completed studies [9-11], is concerned with how
we can effectively exploit the information implicitly
deposited in the ever-growing protein structure databases
and deliver ever-improving prediction accuracy. In this
respect, this article proposes the Prote2S predictor
designed with a novel kernel density estimation algorithm
[12], which features an average time complexity of
O(nlogn) for carrying out the training process, where n is
the number of instances in the training dataset.

Experimental results
This section reports the experiments conducted to investi-
gate how Prote2S performs in comparison with the other
existing predictors of protein secondary structures. The
design of Prote2S is based on the relaxed variable kernel
density estimator (RVKDE) that we have recently pro-
posed [12]. In the next section, we will discuss how the
RVKDE has been incorporated in the design of Prote2S
and the related issues.

For Prote2S, the training dataset was derived from the
PDB version available at the end of May, 2007. In order to
guarantee that no protein chains used to generate the
training dataset is homologous to the benchmark protein
chains on the EVA server [13], from which the testing
dataset was extracted, BLAST [14] was invoked and the cri-
terion of homology was set to sequence identity higher
than 25%. Then, the CD-HIT clustering algorithm [15]
with the similarity threshold set to 0.4 was invoked to
remove redundant protein chains in the PDB. After these
two processes, a total of 8006 protein chains remained. To
generate the training dataset, we followed the approach
employed in [6]. Accordingly, one training instance was
created for each residue in the 8006 protein chains by
associating the residue with the position specific scoring
matrix (PSSM) computed by the PSI-BLAST software pack-
age [14] with window size set to 15. As a result, a total of

1,801,039 training instances were generated and each was
labeled by DSSP [16] as one of the three types of second-
ary structure elements: alpha-helix, beta-strand, or coil.

The testing dataset used in the following experiments was
derived from the 106 benchmark protein chains released
on the EVA server between September 7, 2004 and March
1, 2006. We extracted only those 89 protein chains of
which the prediction results made by all the 5 predictors
involved in the comparison are available on the EVA
server. The testing dataset then comprises 27 long protein
chains, each of which contains more than 100 residues,
and 62 short protein chains.

In addition to the training and testing datasets, we gener-
ated a validation dataset for tuning the parameters in
Prote2S. How the validation dataset was generated and
how the validation process was carried out will be elabo-
rated in the next section.

Table 1, 2, 3 show how Prote2S performs with the testing
dataset in comparison with the other predictors whose
results are available on the EVA server. In Tables 1 and 2,
we report the accuracies deliver by alternative predictors
with protein chains longer than 100 residues and with
those shorter than 100 residues, respectively. One inter-
esting observation is that most predictors delivered higher
prediction accuracy with the long protein chains than
with the short ones. Furthermore, Prote2S delivered the
highest prediction accuracy with the long protein chains
in comparison with the other predictors. If we use the
rule-of-thumb proposed in [11], then the Q3 score deliv-
ered by Prote2S with long protein chains is significantly
higher than those delivered by the other predictors. On
the other hand, though Prote2S still leads in terms of the
SOV score with long protein chains, the difference is not
significant.

Though the prediction accuracy delivered by Prote2S with
long protein chains is superior, Prote2S did not perform
as well with short protein chains. In fact, the prediction
accuracy delivered by Prote2S with short protein chains is
inferior to most predictors listed in Table 2. Accordingly,
we can conclude that alternative machine learning algo-
rithms offer different advantages and suffer some limita-
tions. Therefore, it may be desirable to design a hybrid
predictor that exploits the respective advantages of alter-
native predictors. For example, we may implement a
hybrid predictor that invokes Prote2S when dealing with
a long protein chain and invokes PSIPRED otherwise.

As mentioned earlier, one of the major distinctive feature
of the RVKDE-based predictor is that the average time
taken to construct a predictor is in the order of O(nlogn),
where n is the number of training instances. Therefore, it
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is conceivable that Prote2S can effectively cope with the
high growth rate of the PDB and deliver ever-increasing
prediction accuracy. In this respect, the experiment
reported in Table 4 has been conducted to evaluate the
related effects. In this experiment, we provided Prote2S
and the LIBSVM package [17] with randomly generated
subsets of the training dataset and testing was conducted
with the 27 long protein chains in the testing dataset. The
Gaussian kernel was adopted in LIBSVM and the two
related parameters were set as C = 2 and γ = 0.01 based on
the model selection process employed in [18]. The execu-
tion times shown in Table 4 were measured on a worksta-
tion equipped with an Intel Xeon 3.2GHz CPU and 8-
GByte memory and do not include the time taken to carry
out model selection or cross validation.

The first observation about the experimental results pre-
sented in Table 4 is that the training time with the LIBSVM
increases approximately in the order of O(n2). On the

other hand, the training time with the Prote2S increases
approximately in the order of O(nlogn). Accordingly, it is
conceivable that simply employing the SVM might be
impractical for some bioinformatics applications, in
which the database involved is already large and still
growing fast. Another observation with Table 4 is that LIB-
SVM generally delivered higher prediction accuracy than
Prote2S but the difference diminishes as the size of the
training dataset increases. This observation is consistent
with that reported by the research team led by D.T. Jones
[6]. According to their study, the SVM can deliver higher
prediction accuracy than a neural network when the train-
ing dataset is small and the difference diminishes as the
size of the training dataset increases.

Our proposition concerning the inferior accuracies deliv-
ered by Prote2S in Table 4 is that it results from the
asymptotic approach employed to establish the mathe-
matical foundation of kernel density estimation [12,19].

Table 1: Prediction accuracies delivered by alternative predictors with the 27 protein chains longer than 100 residues extracted from 
the EVA server.

Q3 Q3H_O Q3H_P Q3E_O Q3E_P Q3C_O Q3C_P SOV SOVH SOVE SOVC

Prote2S 80.3% 76.4% 78.3% 60.5% 75.8% 84.1% 76.3% 76.9% 77.7% 64.9% 75.2%
Errsig 2.0% 3.8% 3.4% 9.3% 7.8% 2.0% 2.4% 2.2% 3.2% 9.4% 2.4%

PSIPRED 78.2% 78.0% 76.4% 60.6% 67.3% 77.0% 75.3% 75.0% 76.2% 62.7% 72.0%
Errsig 1.2% 4.1% 3.8% 9.0% 9.4% 1.8% 1.9% 1.4% 3.7% 9.0% 1.8%

PROFsec 77.9% 71.6% 81.6% 61.0% 63.4% 80.2% 72.7% 76.1% 75.4% 64.1% 73.0%
Errsig 1.2% 3.7% 3.8% 9.2% 9.2% 2.0% 1.6% 1.4% 3.8% 9.2% 1.9%

PHDpsi 75.2% 76.4% 77.3% 55.5% 61.9% 74.1% 72.5% 72.5% 75.6% 56.3% 70.1%
Errsig 1.3% 3.5% 3.7% 8.8% 9.3% 2.6% 2.1% 1.7% 3.4% 8.9% 2.4%

SABLE2 77.0% 74.0% 79.3% 55.2% 75.0% 80.2% 71.4% 72.6% 74.5% 59.9% 70.1%
Errsig 1.3% 3.5% 3.1% 8.9% 4.8% 2.4% 1.7% 2.0% 3.1% 9.1% 2.6%

PROF_king 70.7% 56.6% 72.7% 55.8% 57.8% 77.6% 67.1% 67.5% 60.9% 58.6% 68.2%
Errsig 1.5% 4.6% 7.8% 9.1% 7.2% 1.8% 2.1% 1.6% 4.6% 9.1% 2.2%

Errsig is the significant difference margin for each score and is defined as the standard deviation over the square root of the number of proteins. 
Q3H/E/C and SOVH/E/C values are the specific Q3 and SOV scores of the predicted helix, strand and coil regions, respectively. Q3H_O (Q3E_O 
and Q3C_O, respectively) represents correctly predicted helix (strand and coil, respectively) residues (percentage of helix observed), and Q3H_P 
(Q 3E_P and Q3C_P, respectively) represents correctly predicted helix (strand and coil, respectively) residues (percentage of helix predicted).

Table 2: Prediction accuracies delivered by alternative predictors with the 62 protein chains shorter than 100 residues extracted from 
the EVA server.

Q3 Q3H_O Q3H_P Q3E_O Q3E_P Q3C_O Q3C_P SOV SOVH SOVE SOVC

Prote2S 75.1% 73.1% 79.4% 69.7% 73.7% 85.3% 70.6% 69.4% 74.7% 71.8% 72.4%
Errsig 1.5% 3.5% 3.6% 4.4% 4.7% 1.6% 2.2% 2.5% 3.5% 4.3% 2.1%

PSIPRED 77.0% 78.4% 80.3% 69.8% 76.9% 77.5% 77.7% 73.2% 75.4% 72.1% 72.6%
Errsig 1.6% 3.9% 3.2% 4.3% 3.9% 1.8% 2.0% 2.2% 3.9% 4.3% 2.2%

PROFsec 76.4% 78.0% 82.4% 75.8% 69.7% 79.6% 74.0% 72.9% 79.7% 77.7% 71.0%
Errsig 1.5% 3.1% 3.2% 3.5% 4.4% 1.6% 1.9% 2.2% 3.1% 3.5% 2.3%

PHDpsi 75.6% 82.7% 76.1% 70.4% 67.5% 75.4% 77.2% 70.2% 79.4% 72.0% 69.1%
Errsig 1.7% 3.1% 3.6% 4.1% 4.7% 1.9% 1.9% 2.4% 3.3% 4.1% 2.5%

SABLE2 76.3% 76.1% 76.4% 71.3% 61.2% 80.7% 74.8% 71.5% 77.1% 72.1% 71.0%
Errsig 1.6% 3.6% 4.0% 4.1% 5.0% 1.4% 2.0% 2.3% 3.7% 4.2% 2.2%

PROF_king 72.5% 67.4% 83.5% 72.6% 66.6% 79.9% 70.1% 65.8% 67.2% 72.8% 68.5%
Errsig 1.7% 4.1% 3.3% 4.2% 4.7% 1.6% 2.3% 2.5% 4.2% 4.4% 2.4%
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Since the asymptotic approach assumes that the number
of training instances approaches infinity, under circum-
stances in which the size of the training dataset is not suf-
ficiently large, the mathematical model of a kernel density
estimator may become inaccurate and the kernel density
estimation based predictor may deliver inferior accuracy.
Nevertheless, as the size of the training dataset increases,
this effect should diminish.

Another aspect of the execution time with a predictor is
the time taken to make a prediction. In this respect, it has
been shown in our recent article that the average time
taken by the RVKDE-based predictor to make predictions
with n' incoming objects is in the order of O(n' log n) [12].
Table 5 shows how the execution times taken by Prote2S
and LIBSVM to make predictions increase with the size of
the training dataset. The results show that the execution
time taken by Prote2S increases slower than that taken by
the SVM, which grows approximately in the same order as
the size of the training dataset. In this experiment, we pro-
vided Prote2S and the LIBSVM package [17] with ran-
domly generated subsets of the training dataset and

testing was conducted with the 27 long protein chains in
the testing dataset.

The RVKDE based predictor
As mentioned above, the design of Prote2S is based on a
novel kernel density estimation algorithm. The mathe-
matical fundamentals of the so-called RVKDE can be
found in our recent publication [12]. A kernel density esti-
mator is in fact an approximate probability density func-
tion. Let {s1, s2..., sn} be a set of sampling instances
randomly and independently taken from the distribution
governed by fX in the m-dimensional vector space. Then,
with the RVKDE algorithm, the value of fX at point v is esti-
mated as follows:
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Table 3: Prediction accuracies delivered by alternative predictors with the 89 benchmark protein chains extracted from the EVA 
server.

Q3 Q3H_O Q3H_P Q3E_O Q3E_P Q3C_O Q3C_P SOV SOVH SOVE SOVC

Prote2S 76.7% 74.1% 79.1% 71.4% 76.6% 84.9% 72.3% 71.7% 75.6% 74.2% 73.3%
Errsig 1.3% 2.7% 2.7% 3.2% 3.5% 1.3% 1.7% 1.9% 2.6% 3.2% 1.6%

PSIPRED 77.4% 78.3% 79.1% 71.5% 78.5% 77.3% 77.0% 73.7% 75.7% 73.8% 72.4%
Errsig 1.2% 3.0% 2.5% 3.1% 2.9% 1.4% 1.5% 1.6% 2.9% 3.1% 1.6%

PROFsec 76.9% 76.0% 82.1% 75.8% 72.3% 79.7% 73.6% 73.9% 78.4% 78.0% 71.6%
Errsig 1.1% 2.5% 2.5% 2.6% 3.2% 1.3% 1.4% 1.6% 2.5% 2.6% 1.7%

PHDpsi 75.5% 80.8% 76.5% 70.4% 70.3% 75.0% 75.8% 70.9% 78.2% 71.7% 69.4%
Errsig 1.3% 2.4% 2.7% 3.0% 3.4% 1.5% 1.5% 1.7% 2.5% 3.0% 1.9%

SABLE2 76.5% 75.5% 77.3% 70.9% 65.4% 80.6% 73.7% 71.8% 76.3% 72.9% 70.7%
Errsig 1.2% 2.7% 2.9% 3.0% 3.8% 1.2% 1.5% 1.7% 2.7% 3.1% 1.7%

PROF_king 72.0% 64.1% 82.5% 72.0% 66.2% 79.2% 69.1% 66.3% 65.3% 73.0% 68.4%
Errsig 1.2% 3.2% 2.6% 3.1% 3.5% 1.2% 1.7% 1.8% 3.3% 3.2% 1.8%

Table 4: Size of the training dataset vs. execution times taken by the Prote2S and the SVM during the training process.

Prote2S SVM

Number of protein chains used to generate the training 
dataset

Training time (in seconds) Q3 SOV Training time (in seconds) Q3 SOV

50 29.6 64.0
%

52.9
%

138.08 71.3
%

64.3
%

100 91.7 69.0
%

64.1
%

527.02 74.0
%

68.3
%

250 486.4 71.4
%

67.2
%

5105.63 75.5
%

71.0
%

500 1377.4 71.9
%

67.9
%

21040.0 76.8
%

72.3
%

1000 3887.8 73.9
%

71.1
%

78795.25 77.4
%

73.3
%
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2) R(si) is the maximum distance between si and its k near-
est training instances;

3) Γ (·) is the Gamma function [20];

4) β and k are parameters to be set either through cross
validation or by the user.

For prediction of protein secondary structures, one kernel
density estimator is created to approximate the distribu-
tion of each class of training instances. As mentioned ear-
lier, in our experiment, each residue is associated with a
PSSM computed with the PSI-BLAST software package,
and is labeled as one of the three types of secondary struc-
ture elements: alpha-helix, beta-strand, or coil, as deter-
mined by DSSP. Then, a query instance located at v is
predicted to belong to the class that gives the maximum
value with the likelihood function defined as follows:

where |Sj| is the number of class-j training instances, and

 is the kernel density estimator corresponding to

class-j training instances. In our current implementation,
in order to improve the efficiency of the predictor, we
include only a limited number, denoted by k', of the near-

est class-j training instances of v while computing .

With the predictions made by the RVKDE based algorithm
for the query protein chain, Prote2S carries out a smooth-
ing process as the last step before outputting the results.
The smoothing process includes two phases. In the first
phase, each single-residue segment of secondary struc-
tures with its two neighboring residues belonging to the
same secondary structure is examined to determine
whether switching the prediction of the single-residue seg-
ment to the same secondary structure as its neighbors can
form a new segment containing 4 or more residues. If yes,
then the switching is carried out. Otherwise, nothing will

happen. In the second phase, all the remaining single-res-
idue segments of secondary structures except those pre-
dicted to be a coil are located and the prediction of each
segment is switched to the secondary structure of its
longer neighboring segment.

Parameter tuning
In the experiments reported in this article, the 4 parame-
ters in the RVKDE algorithm were set as m = 1, β = 3, k =
38, and k' = 60, through a validation process. The valida-
tion dataset was derived from the 1903 protein chains
deposited into the PDB between June 1 and August 31 in
2007. In order to remove redundancy, BLAST was invoked
to guarantee that the BLAST-computed e-value similarity
score between any two protein chains in the validation
dataset is larger than 0.1. Furthermore, we removed those
protein chains that are homologous to one or more of the
protein chains used to generate the training dataset with a
BLAST-computed sequence identity larger than 25%. As a
result, a total of 302 protein chains remained. Among
these 302 protein chains, we then included those 45
chains that are longer than 100 residues to generate the
validation dataset.
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