
BioMed CentralBMC Research Notes

ss
Open AcceTechnical Note
SWPS3 – fast multi-threaded vectorized Smith-Waterman for IBM
Cell/B.E. and ×86/SSE2
Adam Szalkowski*1,2, Christian Ledergerber1, Philipp Krähenbühl1 and
Christophe Dessimoz1,2

Address: 1Department of Computer Science, ETH Zürich, Zurich, Switzerland and 2Swiss Institute of Bioinformatics, Lausanne, Switzerland

Email: Adam Szalkowski* - adam.szalkowski@inf.ethz.ch; Christian Ledergerber - ledergec@student.ethz.ch;
Philipp Krähenbühl - pk@student.ethz.ch; Christophe Dessimoz - cdessimoz@inf.ethz.ch

* Corresponding author

Abstract
Background: We present swps3, a vectorized implementation of the Smith-Waterman local
alignment algorithm optimized for both the Cell/BE and ×86 architectures. The paper describes
swps3 and compares its performances with several other implementations.

Findings: Our benchmarking results show that swps3 is currently the fastest implementation of a
vectorized Smith-Waterman on the Cell/BE, outperforming the only other known implementation
by a factor of at least 4: on a Playstation 3, it achieves up to 8.0 billion cell-updates per second
(GCUPS). Using the SSE2 instruction set, a quad-core Intel Pentium can reach 15.7 GCUPS. We
also show that swps3 on this CPU is faster than a recent GPU implementation. Finally, we note that
under some circumstances, alignments are computed at roughly the same speed as BLAST, a
heuristic method.

Conclusion: The Cell/BE can be a powerful platform to align biological sequences. Besides, the
performance gap between exact and heuristic methods has almost disappeared, especially for long
protein sequences.

Background
Alignments are used in bioinformatics to compare biolog-
ical sequences. The gold standard of sequence alignment
is the optimal local sequence alignment with affine gap
costs by Smith and Waterman [1,2]. Modern implementa-
tions achieve high performances through the use of SIMD
instructions, which perform operations on multiple val-
ues in parallel. Such vectorized implementations for gen-
eral purpose desktop processors include previous work by
Wozniak [3], Rognes and Seeberg [4], and Farrar [5]. The
latter is by a significant margin the fastest implementation
on ×86 architectures with SSE2 (streaming SIMD exten-

sions) instruction set. As for other platforms, Sachdeva et
al. [6] ported the Altivec kernel of ssearch34 from the
FASTA package [7,3] to the Cell/BE, but no implementa-
tion is publicly available, according to our knowledge.
Another solution has been provided by Manavski and
Valle [8] on general purpose graphics hardware.

In this article, we introduce swps3, an implementation of
the Smith-Waterman algorithm that extends Farrar's work
to the IBM Cell/BE platform. There, the improvement in
runtime over results reported by Sachdeva et al. [6] are at
least fourfold. The code also improves Farrar's work on

Published: 29 October 2008

BMC Research Notes 2008, 1:107 doi:10.1186/1756-0500-1-107

Received: 24 July 2008
Accepted: 29 October 2008

This article is available from: http://www.biomedcentral.com/1756-0500/1/107

© 2008 Szalkowski et al; licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 4
(page number not for citation purposes)

http://www.biomedcentral.com/1756-0500/1/107
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18959793
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Research Notes 2008, 1:107 http://www.biomedcentral.com/1756-0500/1/107
×86 architectures, mainly by supporting multi-core proc-
essors. In the following, we first present benchmarking
results achieved with swps3 and compare them to other
implementations. In the second part of the article, we dis-
cuss implementation details and the improvements over
Farrar's algorithm.

Results
By implementing Farrar's algorithm on IBM Cell/BE and
exploiting all available processor cores, swps3 achieves
higher alignment speed than previous implementations.

In the following, we compare swps3 with the following
tools: ssearch35 [7], swsse [5], WU-BLAST 2.0 [9], and
NCBI-BLAST 2.2.18 [10].

The queries consist of protein sequences aligned against
release 55.1 of the Swiss-Prot [11] database featuring
129,199,355 amino acids in 359,942 sequences. The set
of query sequences is an extension of Farrar's [5], with 7
longer sequences with length up to 4000 amino acids.
Throughout the tests, we use the BLOSUM50 scoring

matrix [12]. Curiously, the speed of NCBI-BLAST appears
to be highly sensitive with respect to the scoring matrix.
For instance, we observed runs that were twice as fast
using BLOSUM62. All benchmarks were performed on
Gentoo Linux with a 64-bit 2.6 kernel deployed on either
an Intel Pentium Core 2 Quad Q6600 (2.4 GHz) or a
Sony Playstation 3 featuring a Cell/BE (3.2 GHz) and 256
MiB XDRAM. Note that in this configuration, only six out
of eight SPEs are available to the user.

Figure 1 presents the benchmarking results of our tool on
different multi-core architectures. To put these results into
a broader context, we included the runtime of multi-
threaded WU-BLAST and NCBI-BLAST converted to a
GCUPS-equivalent as well as performance data obtained
by Manavski and Valle [8] on a GPU architecture. The
runtime of ssearch and swsse are roughly the same as
swps3, and are therefore omitted in the figure for the sake
of clarity.

Throughout the benchmark, the Intel Pentium Q6600
was the fastest platform. On that machine, swps3 reaches

Performance EvaluationFigure 1
Performance Evaluation. Performance of gapped local alignment implementations on different multi-core architectures in

GCUPS .

P0
22
32
[1
44
]

P0
11
11
[1
89
]

P0
50
13
[1
89
]

P1
49
42
[2
22
]

P0
07
62
[2
46
]

P0
73
27
[3
75
]

P0
10
08
[4
64
]

P1
06
35
[4
97
]

P2
57
05
[5
53
]

P0
34
35
[5
67
]

P2
78
95
[1
00
0]

P0
77
56
[1
50
0]

P0
47
75
[2
00
5]

P1
90
96
[2
50
4]

P2
81
67
[3
00
5]

P0
C6
B8
[3
56
4]

P2
09
30
[4
06
1]

2

4

6

8

10

12

14

16

18

swps3 Intel Pentium (quad core)
NCBI-BLAST Intel Pentium (quad core)
WU-BLAST Intel Pentium (quad core)

swps3 IBM Cell/B.E. (6 SPE + 1 PPE)
CUDA2× NVidia GeForce 8800 GTX

p
e
rf
o
rm

a
n
ce

[G
C
U
P
S
]

109cell updates
s

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Page 2 of 4
(page number not for citation purposes)

BMC Research Notes 2008, 1:107 http://www.biomedcentral.com/1756-0500/1/107
an average performance of 10.7 GCUPS with a maximum
of 15.7 GCUPS. The multi-threaded heuristic methods are
the fastest with short query sequences, but for sequences
longer than 300 amino acids, WU-BLAST is dominated by
swps3. As for NCBI-BLAST, it exhibits roughly similar
average performance as swps3. This suggests that to align
long protein sequences, the use of heuristics is no longer
justified.

Our implementation on Cell/BE performs relatively better
with long sequence queries, when alignment scores are
represented by 16-bit integers or 32-bit floating point val-
ues. In fact, it is able to catch up with the Intel Pentium
Q6600 when processing (related) queries of 8000 amino
acids (result not shown). On the other hand, the perform-
ances of the Cell/BE are limited by its sparse vector
instruction set. For instance, the lack of support for 8-bit
integer vectors restrains performance on short, unrelated
sequences with low scores, which constitute the largest
portion of the benchmark dataset.

Implementation details
swps3 is largely based on previous implementations of
the striped Smith-Waterman algorithm by [5]. This sec-
tion describes our improvement, grouped by platform.

Cell/BE specific improvements
The architecture of the Cell/BE differs in multiple aspects
from other general purpose microprocessors. In addition
to the main general-purpose PowerPC core (PPE), it fea-
tures eight co-processors called Synergistic Processing Ele-
ments (SPE). The SPEs are not able to access main memory
directly. Instead, each unit has a local storage of 256 kiB
SRAM and a programmable DMA controller which per-
forms bulk transfers between local storage and main
memory, without interrupting program execution on the
SPE. Large portions of our code are written as C++ tem-
plates and we apply intrinsics to access platform specific
instructions. In doing so the compiler is responsible for
optimizations. To ease this task, we manually unroll the
inner loops, which results in a considerable performance
gain. On ×86, execution time is reduced by early termina-
tion of inner loops, while on Cell/BE, early termination
savings are offset by the overhead of evaluating condi-
tional branch instructions. In this case also, static branch
prediction fails to improve performance, and thus we
moved code checking for conditions of early termination
out of the inner loop. Although the memory consumption
of the algorithm is linear in the length of the query and of
the database sequence, memory is mainly consumed by
the profile data. As improvement over Sachdeva et al. [6],
we allow segmentation of the profile to support arbitrary
query sequence lengths. Each segment is sequentially
retrieved from main memory and processed. This requires
storage of intermediate results: after processing the profile

segment, we store the column gap scores (F in Farrar's
notation) and maximum scores (H). Then, the next pro-
file segment is fetched from main memory, replacing the
old segment, and the alignment is resumed with the
stored scores.

In experiments with long amino acid sequences (> 5000
residues), we tried double-buffering the profile (DMA
transfer parallel to computation) but this resulted in
worse performance. Indeed, pre-fetching requires addi-
tional local memory on the SPE, and thus decreases the
length of the profile segments. Instead of pre-computing
the profile on the PPE and transferring it to the SPE, we
tried computing the profile directly on the SPE, thus only
requiring the transfer of the query sequence and scoring
matrix. Unfortunately, this approach resulted in a slightly
higher execution time (results not shown). These results
suggest that that the data transfers between PPE and SPE,
even without double-buffering, only constitute a minor
fraction of total execution time. Most biological query
sequences are short enough for the entire profile to be
loaded at once. The overhead of transmitting database
sequences is also insignificant when considering that the
Cell/BE is able to transmit 16 bytes every two processor
cycles (25.6 GB/s at 3.2 GHz clock frequency).

SSE2-specific improvements
While working on the code for the Cell/BE, we found a
few minor aspects of Farrar's implementation that could
be improved. By design, only unsigned 8-bit integers are
stored in the scoring matrix. For an alignment with 16-bit
scores, the profile is created by expanding these to 16-bit
values by setting the upper bytes to zero. We were able to
reduce the cache footprint caused by the profile by creat-
ing an 8-bit profile and using an unpacking operation
(_mm_unpacklo_epi8) to extend it to 16-bit in the inner
loop of the algorithm. This has shown especially benefi-
cial for long query sequences. Altogether, our SSE2 imple-
mentation shows a very good cache efficiency. According
to Valgrind [13], we have a L1 data miss rate of 0.8% and
a L2 data miss rate of 0.087% when running P20930, the
longest protein sequence in our test set, against Swiss-
Prot.

Furthermore we restructured the lazy F evaluation loop (see
[5]) by transforming it into two nested loops with speci-
fied index ranges to hint the compiler at execution counts.
Also, the condition for early termination of this loop
could be relaxed.

Multi-threaded design
In order to exploit the whole potential of the Cell/BE, we
designed a multi-threaded alignment algorithm to distrib-
ute the workload onto multiple SPEs and the PPE. After
creating the profile, we fork one worker thread for each
Page 3 of 4
(page number not for citation purposes)

BMC Research Notes 2008, 1:107 http://www.biomedcentral.com/1756-0500/1/107
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

CPU core. It has proved most efficient to have six worker
threads initializing a single SPE each and one thread per-
forming an alignment using the Altivec instruction set of
the PPE. The parent process handles file I/O and commu-
nicates with the worker threads over bidirectional pipes to
supply them with database sequences and to collect align-
ment scores. Every worker thread computes the alignment
of the query sequence with a separate database sequence.
Note that the ×86 implementation also benefits from the
multi-threaded design, as recent chips feature an increas-
ing number of processing cores.

Limitations
In the current version, swps3 is only able to compute
scores of local protein sequence alignments with affine
gaps. It does not display the resulting alignment. Users
can select their own scoring matrix through the command
line. Matrix entries are restricted to signed 8-bit integer
values (i.e. from -128 to 127), but support for reading and
scaling floating point matrices is available in the code.
Sequences are limited to a maximal length of 10000
amino acids and scores are bounded by the relevant data
type for computations (unsigned 16-bit integer by
default).

Conclusion
swps3 is a fast and flexible Smith-Waterman implementa-
tion for the Cell/BE, for PowerPC, and for ×86/×86_64
architectures. With a performance of up to 15.7 GCUPS
on a quad-core Pentium and 8.0 GCUPS on the Sony Play-
station 3, it is the fastest implementation we know of on
both platforms. In addition, it also outperforms computa-
tion on general purpose graphics hardware as reported by
Manavski and Valle [8], at significantly lower power con-
sumption and cost.

Availability
project name: SWPS3

project website: http://www.inf.ethz.ch/personal/sadam/
swps3/

operating systems: Linux, Unix, Mac OS X

programming language: C, C++

license: MIT

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
CD initiated and coordinated the project. AS, CL, PK con-
tributed to the program code. AS, CD performed the anal-

ysis and drafted this manuscript. All authors read and
approved the final manuscript.

Acknowledgements
The authors thank Wesley P. Petersen for discussions, and two anonymous
reviewers for helpful comments.

References
1. Smith TF, Waterman MS: Identification of common molecular

subsequences. Journal of Molecular Biology 1981, 147:195-197.
2. Gotoh O: An improved algorithm for matching biological

sequences. J Mol Biol 1982, 162:705-708.
3. Wozniak A: Using video-oriented instructions to speed up

sequence comparison. Computer Applications in the Biosciences
1997, 13(2):145-150.

4. Rognes T, Seeberg E: Six-fold speed-up of Smith-Waterman
sequence database searches using parallel processing on
common microprocessors. Bioinformatics 2000, 16(8):699-706.

5. Farrar M: Striped Smith-Waterman speeds database searches
six times over other SIMD implementations. Bioinformatics
2007, 23(2156-161 [http://dx.doi.org/10.1093/bioinformatics/btl582].

6. Sachdeva V, Kistler M, Speight WE, Tzeng THK: Exploring the Via-
bility of the Cell Broadband Engine for Bioinformatics Appli-
cations. IPDPS 2007:1-8 [http://dx.doi.org/10.1109/
IPDPS.2007.370449]. IEEE

7. Pearson , Lipman : Improved Tools for Biological Sequence
Comparison. Proc Natl Acad Sci 1988, 85:24444-24448.

8. Manavski SA, Valle G: CUDA compatible GPU cards as efficient
hardware accelerators for Smith-Waterman sequence align-
ment. 2008 [http://www.biomedcentral.com/1471-2105/9/S2/S10].

9. Gish W: WU-BLAST. 1996 [Http://blast.wustl.edu].
10. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lip-

man DJ: Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucleic Acids Res 1997,
25(17):3389-3402.

11. Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A,
Gasteiger E, Martin MJ, Michoud K, O'Donovan C, Phan I, Pilbout S,
Schneider M: The SWISS-PROT protein knowledgebase and
its supplement TrEMBL in 2003. Nucleic Acids Res 2003,
31:365-370.

12. Henikoff S, Henikoff JG: Amino acid substitution matrices from
protein blocks. Proc Natl Acad Sci, USA 1992:10915-10919.

13. Nethercote N: Dynamic binary analysis and instrumentation.
Tech Rep UCAM-CL-TR-606 2004 [http://www.cl.cam.ac.uk/techre
ports/UCAM-CL-TR-606.pdf]. University of Cambridge, Computer
Laboratory
Page 4 of 4
(page number not for citation purposes)

http://www.inf.ethz.ch/personal/sadam/swps3/
http://www.inf.ethz.ch/personal/sadam/swps3/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7265238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7265238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7166760
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7166760
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9146961
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9146961
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11099256
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11099256
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11099256
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17110365
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17110365
http://dx.doi.org/10.1093/bioinformatics/btl582
http://dx.doi.org/10.1109/IPDPS.2007.370449
http://dx.doi.org/10.1109/IPDPS.2007.370449
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18387198
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18387198
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18387198
http://www.biomedcentral.com/1471-2105/9/S2/S10
Http://blast.wustl.edu
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12520024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12520024
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-606.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-606.pdf
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Findings
	Conclusion

	Background
	Results
	Implementation details
	Cell/BE specific improvements
	SSE2-specific improvements
	Multi-threaded design
	Limitations

	Conclusion
	Availability
	Competing interests
	Authors' contributions
	Acknowledgements
	References

