Skip to main content

Table 4 The MSE, bias and relative bias of different methods of optimal cut-point selection when data generated under biexponential distributions with equal/unequal sample size from diseased (D) and non-diseased (ND) according to degree of overlap/accuracy

From: Comparison of methods of optimal cut-point selection for biomarkers in diagnostic medicine: a simulation study with application of clinical data in health informatics

Equal sample size1

Degree of overlap

Sample size

Youden index

Euclidian index

Product method

Index of Union

Diagnostic odds ratio

D = ND

MSE

Bias

R.B

MSE

Bias

R.B

MSE

Bias

R.B

MSE

Bias

R.B

MSE

Bias

R.B

Low

50

1.3970

− 0.3006

− 0.1232

0.2183

− 0.0007

− 0.0004

0.3020

0.0184

0.0100

0.0946

− 0.1495

− 0.0813

2192.5

− 46.599

− 0.9320

100

1.1067

− 0.1676

− 0.0687

0.1558

0.0183

0.0101

0.2040

0.0380

0.0206

0.0584

− 0.1334

− 0.0725

2157.9

− 46.167

− 0.9233

200

0.8694

− 0.0393

− 0.0161

0.0830

0.0136

0.0075

0.1245

0.0257

0.0140

0.0433

− 0.1313

− 0.0714

2099.1

− 45.432

− 0.9086

Moderate

50

1.2422

− 0.1779

− 0.0544

0.3517

0.0263

0.0103

0.5716

0.0498

0.0182

0.3349

− 0.3786

− 0.1382

2262.8

− 47.362

− 0.9472

100

0.8318

− 0.1231

− 0.0376

0.2096

0.0282

0.0110

0.3660

0.0574

0.0210

0.2350

− 0.3191

− 0.1165

2239.3

− 47.057

− 0.9411

200

0.5211

− 0.0969

− 0.0296

0.1324

0.0279

0.0109

0.2294

0.0483

0.0176

0.1519

− 0.2507

− 0.0915

2239.5

− 47.020

− 0.9404

High

50

1.8496

− 0.2331

− 0.0469

0.8368

0.0728

0.0181

1.4758

− 0.0018

− 0.0004

1.1215

− 0.6995

− 0.1521

2401.6

− 48.911

− 0.9782

100

1.0507

− 0.2031

− 0.0409

0.4273

0.0232

0.0058

0.9021

− 0.0029

− 0.0006

0.6957

− 0.5225

− 0.1136

2398.1

− 48.851

− 0.9770

200

0.7329

− 0.1623

− 0.0327

0.2325

0.0212

0.0053

0.5498

− 0.0294

− 0.0064

0.3676

− 0.3916

− 0.0851

2403.6

− 48.902

− 0.9780

Unequal sample size1

 

D \(\ne\) ND

MSE

Bias

R.B

MSE

Bias

R.B

MSE

Bias

R.B

MSE

Bias

R.B

MSE

Bias

R.B

Low

50

100

1.2307

− 0.2583

− 0.1059

0.1872

0.0363

0.0201

0.2866

0.0630

0.0343

0.0677

− 0.1283

− 0.0697

2302.7

− 47.799

− 0.9560

50

150

1.3978

− 0.0562

− 0.0230

0.2039

0.0809

0.0138

0.3071

0.1205

0.0655

0.0633

− 0.1041

− 0.0566

2335.3

− 48.154

− 0.9631

50

200

1.3240

− 0.0907

− 0.0372

0.1852

0.0580

0.0320

0.2724

0.0846

0.0460

0.0591

− 0.1108

− 0.0602

2354.0

− 48.360

− 0.9672

Moderate

50

100

1.1099

− 0.0389

− 0.0119

0.3138

0.0742

0.0290

0.5186

0.1006

0.0367

0.2738

− 0.3377

− 0.1232

2369.0

− 48.529

− 0.9706

50

150

1.0450

0.0012

0.0004

0.3105

0.1373

0.0536

0.5531

0.1647

0.0601

0.2281

− 0.2742

− 0.1001

2384.9

− 48.686

− 0.9737

50

200

1.1334

0.0518

0.0159

0.2600

0.0963

0.0376

0.4370

0.1119

0.0408

0.2043

− 0.2667

− 0.0973

2415.2

− 49.032

− 0.9806

High

50

100

1.4932

− 0.0966

− 0.0194

0.7014

0.1167

0.0290

1.3132

0.0918

0.0199

0.8665

− 0.5620

− 0.1222

2449.8

− 49.438

− 0.9888

50

150

1.4370

− 0.0088

− 0.0018

0.6562

0.2136

0.0531

1.2091

0.1662

0.0360

0.7004

− 0.4604

− 0.1001

2451.6

− 49.450

− 0.9890

50

200

1.4623

0.0945

0.0190

0.6928

0.2503

0.0623

1.2345

0.2275

0.0492

0.6146

− 0.4032

− 0.0876

2468.2

− 49.639

− 0.9928

  1. \({X}_{D}\sim E\left({\lambda }_{D}\right)\), \({X}_{ND}\sim E\left(0.5\right)\), and \({\lambda }_{D}\) was taken as 0.33, 0.17, and 0.055, respectively
  2. MSE: Mean square error, R.B.: Relative bias