Skip to main content

Table 2 The MSE, bias and relative bias of different methods of optimal cut-point selection when data generated under binormal distributions with heteroscedastic variance and equal/unequal sample size from diseased (D) and non-diseased (ND) distributions according to degree of overlap/accuracy

From: Comparison of methods of optimal cut-point selection for biomarkers in diagnostic medicine: a simulation study with application of clinical data in health informatics

Equal sample size1

Degree of overlap

Sample size

Youden index

Euclidian index

Product method

Index of Union

Diagnostic odds ratio

D = ND

MSE

Bias

R.B

MSE

Bias

R.B

MSE

Bias

R.B

MSE

Bias

R.B

MSE

Bias

R.B

Low

50

0.1922

0.0662

− 0.4731

0.0419

0.0141

0.1006

0.0572

0.0105

0.0959

0.0169

0.0503

0.3352

9.6550

− 2.9039

− 2.5473

100

0.1270

0.0025

− 0.0178

0.0242

0.0030

0.0215

0.0345

0.0085

0.0773

0.0108

0.0521

0.3471

11.816

− 3.3278

− 2.9191

200

0.0775

0.0075

− 0.0533

0.0148

0.0028

0.0198

0.0217

0.0017

0.0152

0.0079

0.0482

0.3213

13.601

− 3.5951

− 3.1536

Moderate

50

0.1043

− 0.0287

− 0.1197

0.0319

− 0.0025

− 0.0065

0.0482

0.0009

0.0027

0.0300

0.1065

0.3551

17.799

− 4.1671

− 1.9028

100

0.0658

− 0.0230

− 0.0958

0.0212

0.0002

0.0004

0.0334

− 0.0068

− 0.0194

0.0231

0.0989

0.3296

20.387

− 4.4862

− 2.0485

200

0.0427

− 0.0097

− 0.0402

0.0125

− 0.0061

− 0.0160

0.0187

− 0.0074

− 0.0211

0.0164

0.0877

0.2922

22.621

− 4.7287

− 2.1592

High

50

0.0577

− 0.0313

− 0.0337

0.0296

− 0.0152

− 0.0153

0.0436

0.0009

0.0010

0.0345

0.0224

0.0241

52.676

− 7.2479

− 1.3912

100

0.0350

− 0.0232

− 0.0250

0.0162

− 0.0062

− 0.0063

0.0266

0.0044

0.0047

0.0239

0.0170

0.0183

56.903

− 7.5361

− 1.4465

200

0.0232

− 0.0129

− 0.0139

0.0101

− 0.0000

− 0.0000

0.0187

0.0082

0.0086

0.0189

0.0069

0.0074

60.626

− 7.7801

− 1.4933

Unequal sample size1

 

D \(\ne\) ND

MSE

Bias

R.B

MSE

Bias

R.B

MSE

Bias

R.B

MSE

Bias

R.B

MSE

Bias

R.B

Low

50

100

0.1617

0.0504

− 0.3603

0.0328

0.0234

0.1672

0.0452

0.0276

0.2511

0.0157

0.0618

0.4120

11.805

− 3.3304

− 2.9214

50

150

0.1527

0.0779

− 0.5567

0.0318

0.0344

0.2459

0.0415

0.0387

0.3515

0.0160

0.0732

0.4878

12.970

− 3.5326

− 3.0988

50

200

0.1385

0.0769

− 0.5493

0.0315

0.0418

0.2983

0.0437

0.0402

0.3653

0.0148

0.0710

0.4733

13.707

− 3.6564

− 3.2074

Moderate

50

100

0.0843

− 0.0025

− 0.0104

0.0298

0.0160

0.0420

0.0430

0.0091

0.0259

0.0321

0.1208

0.4028

20.419

− 4.4900

− 2.0502

50

150

0.0814

0.0249

0.1037

0.0268

0.0269

0.0708

0.0390

0.0227

0.0647

0.0331

0.1305

0.4351

21.834

− 4.6543

− 2.1253

50

200

0.0794

0.0556

0.2318

0.0249

0.0308

0.0809

0.0388

0.0367

0.1049

0.0332

0.1344

0.4479

22.692

− 4.7500

− 2.1690

High

50

100

0.0482

− 0.0107

− 0.0115

0.0227

0.0111

0.0112

0.0398

0.0048

0.0051

0.0317

0.0424

0.0456

56.925

− 7.5369

− 1.4466

50

150

0.0469

0.0253

0.0272

0.0240

0.0280

0.0282

0.0402

0.0324

0.0341

0.0363

0.0652

0.0701

59.199

− 7.6875

− 1.4755

50

200

0.0450

0.0265

0.0285

0.0216

0.0345

0.0349

0.0365

0.0379

0.0399

0.0347

0.0709

0.0763

60.553

− 7.7751

− 1.4923

  1. \(1. {X}_{D}\sim N\left({\mu }_{D},0.81\right)\), \({X}_{ND}\sim N\left(\text{0,1}\right)\), and \({\mu }_{D}\) was taken as 0.4, 0.8, and 1.85, respectively
  2. MSE: Mean square error, R.B.: Relative bias