Skip to main content

Table 6 Comparison of Precision between SVR [31], MLP [32], RAQP [34], Vlachogianni (Vlacho) [4], LSTM [35], BLSTM [36], SLSTM [37], and the proposed BlaSt Models

From: Ecosense: a revolution in urban air quality forecasting for smart cities

APCs

Method

1hr

2hr

3hr

4hr

5hr

6hr

7hr

8hr

9hr

10hr

11hr

12hr

\(PM_{2.5}\)

SVR

0.938

0.904

0.892

0.862

0.802

0.798

0.753

0.735

0.710

0.697

0.655

0.633

 

MLP

0.958

0.927

0.895

0.856

0.823

0.790

0.770

0.758

0.733

0.714

0.710

0.703

 

RAQP

0.920

0.912

0.904

0.890

0.879

0.853

0.839

0.790

0.768

0.746

0.713

0.699

 

Vlacho

0.867

0.844

0.813

0.785

0.734

0.716

0.687

0.650

0.629

0.610

0.605

0.599

 

LSTM

0.948

0.923

0.919

0.893

0.863

0.833

0.813

0.793

0.753

0.740

0.725

0.711

 

BLSTM

0.966

0.920

0.890

0.865

0.843

0.825

0.815

0.793

0.773

0.743

0.723

0.703

 

SLSTM

0.979

0.954

0.934

0.913

0.880

0.863

0.825

0.801

0.790

0.765

0.743

0.723

 

BlaSt

0.995

0.975

0.930

0.910

0.896

0.892

0.880

0.860

0.860

0.850

0.840

0.828

\(NO_{2}\)

SVR

0.915

0.913

0.903

0.888

0.883

0.873

0.863

0.857

0.843

0.798

0.783

0.778

 

MLP

0.900

0.878

0.838

0.832

0.808

0.783

0.760

0.753

0.724

0.720

0.703

0.701

 

RAQP

0.966

0.958

0.928

0.910

0.884

0.867

0.839

0.828

0.798

0.763

0.748

0.707

 

Vlacho

0.868

0.848

0.840

0.835

0.823

0.802

0.797

0.790

0.720

0.709

0.705

0.703

 

LSTM

0.963

0.943

0.940

0.905

0.884

0.856

0.847

0.784

0.760

0.751

0.737

0.718

 

BLSTM

0.975

0.954

0.930

0.905

0.884

0.857

0.837

0.800

0.789

0.760

0.746

0.718

 

SLSTM

0.980

0.978

0.950

0.925

0.883

0.856

0.837

0.810

0.790

0.772

0.747

0.728

 

BlaSt

0.992

0.980

0.903

0.889

0.884

0.874

0.865

0.858

0.848

0.843

0.838

0.836

CO

SVR

0.923

0.889

0.869

0.854

0.834

0.808

0.778

0.762

0.720

0.697

0.688

0.678

 

MLP

0.952

0.946

0.888

0.858

0.828

0.798

0.778

0.760

0.739

0.730

0.712

0.706

 

RAQP

0.960

0.933

0.898

0.898

0.893

0.873

0.869

0.865

0.852

0.843

0.820

0.778

 

Vlacho

0.872

0.867

0.863

0.860

0.859

0.857

0.849

0.841

0.813

0.804

0.790

0.784

 

LSTM

0.973

0.934

0.900

0.875

0.843

0.820

0.787

0.750

0.738

0.722

0.717

0.703

 

BLSTM

0.989

0.954

0.930

0.905

0.884

0.856

0.817

0.800

0.780

0.760

0.737

0.708

 

SLSTM

0.980

0.954

0.933

0.908

0.864

0.839

0.817

0.790

0.760

0.730

0.717

0.701

 

BlaSt

0.995

0.965

0.925

0.897

0.896

0.886

0.878

0.865

0.857

0.847

0.836

0.834

  1. Bold values indicate the efficiency as well as the superior performance of our proposed model