Skip to main content

Table 5 Comparison of Recall between SVR [31], MLP [32], RAQP [34], Vlachogianni (Vlacho) [4], LSTM [35], BLSTM [36], SLSTM [37], and the proposed BlaSt Models

From: Ecosense: a revolution in urban air quality forecasting for smart cities

APCs

Method

1hr

2hr

3hr

4hr

5hr

6hr

7hr

8hr

9hr

10hr

11hr

12hr

\(PM_{2.5}\)

SVR

0.942

0.888

0.849

0.788

0.759

0.712

0.710

0.700

0.692

0.680

0.678

0.662

 

MLP

0.958

0.911

0.899

0.856

0.815

0.790

0.738

0.713

0.701

0.700

0.695

0.650

 

RAQP

0.923

0.915

0.899

0.895

0.875

0.858

0.820

0.799

0.765

0.725

0.710

0.700

 

Vlacho

0.865

0.840

0.825

0.788

0.760

0.749

0.715

0.706

0.681

0.655

0.615

0.610

 

LSTM

0.951

0.950

0.930

0.889

0.855

0.832

0.820

0.799

0.778

0.740

0.720

0.711

 

BLSTM

0.969

0.943

0.911

0.880

0.851

0.833

0.815

0.789

0.760

0.732

0.723

0.712

 

SLSTM

0.975

0.954

0.943

0.922

0.890

0.870

0.850

0.812

0.783

0.775

0.765

0.758

 

BlaSt

0.995

0.980

0.930

0.910

0.910

0.900

0.890

0.880

0.865

0.849

0.835

0.829

\(NO_{2}\)

SVR

0.925

0.913

0.905

0.892

0.890

0.885

0.870

0.860

0.850

0.805

0.799

0.785

 

MLP

0.955

0.875

0.853

0.832

0.819

0.795

0.779

0.769

0.739

0.720

0.710

0.701

 

RAQP

0.969

0.960

0.930

0.920

0.895

0.870

0.860

0.848

0.795

0.785

0.768

0.720

 

Vlacho

0.895

0.868

0.840

0.835

0.823

0.810

0.805

0.797

0.769

0.740

0.739

0.723

 

LSTM

0.982

0.970

0.940

0.910

0.880

0.860

0.840

0.795

0.775

0.765

0.745

0.725

 

BLSTM

0.973

0.960

0.945

0.910

0.890

0.860

0.840

0.815

0.790

0.775

0.750

0.730

 

SLSTM

0.991

0.970

0.965

0.930

0.890

0.840

0.835

0.825

0.790

0.775

0.750

0.735

 

BlaSt

0.993

0.991

0.895

0.890

0.892

0.867

0.865

0.840

0.842

0.830

0.829

0.825

CO

SVR

0.930

0.895

0.885

0.865

0.840

0.810

0.780

0.770

0.765

0.695

0.689

0.681

 

MLP

0.960

0.945

0.942

0.880

0.860

0.830

0.801

0.780

0.750

0.740

0.730

0.722

 

RAQP

0.960

0.940

0.911

0.890

0.873

0.853

0.843

0.832

0.810

0.780

0.765

0.740

 

Vlacho

0.872

0.859

0.858

0.849

0.843

0.840

0.832

0.811

0.805

0.801

0.790

0.779

 

LSTM

0.972

0.940

0.915

0.880

0.851

0.835

0.790

0.765

0.740

0.735

0.720

0.710

 

BLSTM

0.973

0.960

0.945

0.900

0.890

0.860

0.820

0.811

0.795

0.775

0.740

0.708

 

SLSTM

0.980

0.950

0.934

0.900

0.860

0.840

0.820

0.790

0.760

0.730

0.720

0.707

 

BlaSt

0.990

0.960

0.920

0.895

0.890

0.880

0.870

0.860

0.850

0.840

0.830

0.820

  1. Bold values indicate the efficiency as well as the superior performance of our proposed model