Skip to main content

Table 5 Computed maximum point-wise error and rate of convergence for Example(1) at \(\varepsilon _{1}=10^{-6}\) and varying values of \(\varepsilon _{1}\)

From: Gaussian quadrature method with exponential fitting factor for two-parameter singularly perturbed parabolic problem

\(\varepsilon _{2}\)

\(N=32\)

\(N=64\)

\(N=128\)

\(N=256\)

\(N=512\)

\(N=1024\)

\(\downarrow\)

\(M=10\)

\(M=20\)

\(M=40\)

\(M=80\)

\(M=160\)

\(M=320\)

\(10^{-6}\)

\(3.1504e-03\)

\(8.1321e-04\)

\(2.0669e-04\)

\(5.2012e-05\)

\(1.2694e-05\)

\(2.9297e-06\)

 

1.9538

1.9762

1.9906

2.0347

2.1153

\(10^{-8}\)

\(3.1503e-03\)

\(8.1313e-04\)

\(2.0666e-04\)

\(5.1994e-05\)

\(1.2686e-05\)

\(2.9270e-06\)

 

1.9539

1.9762

1.9908

2.0351

2.1157

\(10^{-10}\)

\(3.1503e-03\)

\(8.1313e-04\)

\(2.0666e-04\)

\(5.1994e-05\)

\(1.2686e-05\)

\(2.9269e-06\)

 

1.9539

1.9762

1.9908

2.0351

2.1158

\(10^{-12}\)

\(3.1503e-03\)

\(8.1313e-04\)

\(2.0666e-04\)

\(5.1994e-05\)

\(1.2686e-05\)

\(2.9269e-06\)

 

1.9539

1.9762

1.9908

2.0351

2.1158

\(10^{-14}\)

\(3.1503e-03\)

\(8.1313e-04\)

\(2.0666e-04\)

\(5.1994e-05\)

\(1.2686e-05\)

\(2.9269e-06\)

 

1.9539

1.9762

1.9908

2.0351

2.1158

\(E^{N,M}\)

\(3.1504e-03\)

\(8.1321e-04\)

\(2.0669e-04\)

\(5.2012e-05\)

\(1.2694e-05\)

\(2.9297e-06\)

\({\overline{R}}^{N,M}\)

1.9538

1.9762

1.9906

2.0347

2.1153