Skip to main content

Table 4 Comparison of \(E^{N,M}_{\varepsilon _{1},\varepsilon _{2}}, E^{N,M},{\overline{R}}^{N,M}\) for Example (1) with [9, 13]

From: Gaussian quadrature method with exponential fitting factor for two-parameter singularly perturbed parabolic problem

\(\varepsilon _{2}=10^{-6}\)

\(N=32\)

\(N=64\)

\(N=128\)

\(N=256\)

\(N=512\)

 

\(M=10\)

\(M=20\)

\(M=40\)

\(M=80\)

\(M=160\)

Present method

\(E^{N,M}\)

\(3.1504e-03\)

\(8.1321e-04\)

\(2.0669e-04\)

\(5.2043e-05\)

\(1.3070e-05\)

\({\overline{R}}^{N,M}\)

1.9538

1.9762

1.9906

1.9934

Result in [9](Exponentially Fitted Method)

\(E^{N,M}\)

\(3.9334e-03\)

\(1.1115e-03\)

\(2.9600e-04\)

\(7.6401e-05\)

\(1.9400e-05\)

\({\overline{R}}^{N,M}\)

1.8233

1.9088

1.9539

1.9775

Result in [13](Quadratic B-spline Collocation Method)

\(E^{N,M}\)

\(3.9420e-02\)

\(1.9392e-02\)

\(9.5791e-03\)

\(4.7594e-03\)

\(2.3718e-03\)

\({\overline{R}}^{N,M}\)

1.023

1.017

1.009

1.005